• Title/Summary/Keyword: Additive Mapping

Search Result 117, Processing Time 0.02 seconds

STABILITY OF ADDITIVE (n, 2)-MAPPINGS

  • Kang, Pyung-Lyun;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2004
  • We define an additive (n, 2)-mapping, and prove the stability of additive (n, 2)-mappings.

  • PDF

STABILITY AND HYPERSTABILITY OF MULTI-ADDITIVE-CUBIC MAPPINGS IN INTUITIONISTIC FUZZY NORMED SPACES

  • Ramzanpour, Elahe;Bodaghi, Abasalt;Gilani, Alireza
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.391-409
    • /
    • 2020
  • In the current paper, the intuitionistic fuzzy normed space version of Hyers-Ulam stability for multi-additive, multi-cubic and multi-additive-cubic mappings by using a fixed point method are studied. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes in intuitionistic fuzzy normed space are presented.

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

ON THE STABILITY OF A GENERALIZED ADDITIVE FUNCTIONAL EQUATION II

  • Lee, Jung-Rye;Lee, Tae-Keug;Shin, Dong-Yun
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.111-125
    • /
    • 2007
  • For an odd mapping, we study a generalized additive functional equation in Banach spaces and Banach modules over a $C^*-algebra$. And we obtain generalized solutions of a generalized additive functional equation and so generalize the Cauchy-Rassias stability.

  • PDF

REMARKS ON THE STABILITY OF ADDITIVE FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Kim, Hark-Mahn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.679-687
    • /
    • 2001
  • In this paper, using an idea from the direct method of Hyers, we give the conditions in order for a linear mapping near an approximately additive mapping to exist.

  • PDF

APPROXIMATE ADDITIVE-QUADRATIC MAPPINGS AND BI-JENSEN MAPPINGS IN 2-BANACH SPACES

  • Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.467-476
    • /
    • 2017
  • In this paper, we obtain the stability of the additive-quadratic functional equation f(x+y, z+w)+f(x+y, z-w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w) and the bi-Jensen functional equation $$4f(\frac{x+y}{2},\;\frac{z+w}{2})=f(x,\;z)+f(x,\;w)+f(y,\;z)+f(y,\;w)$$ in 2-Banach spaces.