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IDENTITIES WITH ADDITIVE MAPPINGS

IN SEMIPRIME RINGS

Ajda Fošner and Nadeem ur Rehman

Abstract. The aim of this paper is to prove the next result. Let n > 1
be an integer and let R be a n!-torsion free semiprime ring. Suppose that
f : R → R is an additive mapping satisfying the relation [f(x), xn] = 0
for all x ∈ R. Then f is commuting on R.

1. Introduction and the main theorem

Throughout, R will represent an associative ring with a center Z(R). Let
n > 1 be an integer. A ring R is n-torsion free if nx = 0, x ∈ R, implies
x = 0. The Lie product (or a commutator) of elements x, y ∈ R will be denoted
by [x, y] (i.e., [x, y] = xy − yx). Recall that a ring R is prime if aRb = {0},
a, b ∈ R, implies that either a = 0 or b = 0. Furthermore, a ring R is called
semiprime if aRa = {0}, a ∈ R, implies a = 0. We will denote by C and Q the
extended centroid and the maximal right ring of quotients of a semiprime ring
R, respectively. For the explanation of the extended centroid as well as the
maximal right ring of quotients of a semiprime ring we refer the reader to [4].
As usual, the socle of a ring R will be denoted by soc(R).

An additive mapping D : R → R is called a derivation on R if D(xy) =
D(x)y + xD(y) holds for all pairs x, y ∈ R. An additive mapping f : R →
R is called centralizing on R if [f(x), x] ∈ Z(R) holds for all x ∈ R. In a
special case, when [f(x), x] = 0 for all x ∈ R, the mapping f is said to be
commuting on R. A classical result of Posner [21] (Posner’s second theorem)
states that the existence of a nonzero centralizing derivation on a prime ring
forces the ring to be commutative. Posner’s second theorem in general cannot
be proved for semiprime rings as shows the following example. Let R1 and
R2 be prime rings with R1 commutative and set R = R1 ⊕ R2. Further, let
D1 : R1 → R1 be a nonzero derivation. A mapping D : R → R defined by
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D((r1, r2)) = (D1(r1), 0) is then a nonzero commuting derivation. It is also
easy to show that if D : R → R is a commuting derivation on a semiprime
ring R, then D maps R into Z(R) (see, for example, the end of the proof
of Theorem 2.1 in [25]). Furthermore, Brešar [7] proved that every additive
commuting mapping of a prime ring R is of the form x 7→ λx+ ζ(x), where λ is
an element of the extended centroid C and ζ : R → C is an additive mapping.
For results concerning commuting mappings, centralizing mappings and related
problems we refer the reader to [1,5–13,18,22–28] where further references can
be found.

In [18] Vukman and the first named author generalized the result proved by
Brešar and Hvala for prime rings [9].

Theorem 1 ([18, Theorem 2]). Let R be a 2-torsion free semiprime ring.

Suppose that an additive mapping f : R → R satisfies the relation
[

f(x), x2
]

= 0

for all x ∈ R. Then f is commuting on R.

This result motivated us to prove our main theorem.

Main Theorem. Let n > 1 be a fixed integer and R a n!-torsion free semiprime

ring. Suppose that an additive mapping f : R → R satisfies the relation

(1) [f(x), xn] = 0

for all x ∈ R. Then f is commuting on R.

Let us point out that the above theorem might be of some interest from the
functional analysis point of view as well since C∗-algebras (moreover, semisim-
ple Banach algebras) are semiprime.

2. Proof of the main theorem

Let n > 1 be a fixed integer. Before proving our main theorem, let us fix
some notation and write two results (Lemma 1 and Proposition 1) which we will
need in the following. Let m > 1 be an integer and F an arbitrary field. Then
Mm(F) denotes the algebra of all m×m matrices over the field F. Recall that
Z(Mm(F)) = FI, where I ∈ Mm(F) is the identity matrix. By Eij ∈ Mm(F),
1 ≤ i, j ≤ m, we will denote the matrix with (i, j)-entry equal to one and all
the others equal to zero.

Lemma 1. Let R = Mm(F), m > 1, and A ∈ R. Suppose that

(2) [A,Xn] = 0

for all X ∈ R. Then A ∈ FI.

Proof. Let P be an idempotent matrix in Mm(F). Setting X = P in (2)
and multiplying left side by (I − P ), we see that (I − P )AP = 0 for any
idempotent matrix P . Thus, A is a diagonal matrix. Note that UAU−1 must
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be diagonal for each invertible element U ∈ Mm(F), since [UAU−1, Xn] = 0 for
all X ∈ Mm(F). Write A =

∑m

i=1
αiEii, where αi ∈ F. Then, for each j > 1

the (1, j)-entry of (I +E1j)A(I +E1j)
−1 equals 0. That is, αj = α1 for j > 1.

Hence, A ∈ FI, as desired. �

Proposition 1. Let R be a non-commutative prime ring and a ∈ R such that

[a, xn] = 0

for all x ∈ R. Then a ∈ Z(R).

Proof. Suppose on the contrary that a 6∈ Z(R). Then

f(X) = [a,Xn]

is a nontrivial generalized polynomial identity (in the following referred as GPI)
for R. Using [14], f(X) is also a GPI for Q. Denote by F either the algebraic
closure of C or C itself according to the cases when C is either infinite or finite
dimensional, respectively. Then, using a standard argument (e.g., see [19,
Proposition]), f(X) is also a GPI for Q ⊕C F . Since Q ⊕C F is a centrally
closed prime F -algebra [15, Theorem 2.5 and Theorem 3.5], by replacing R
and C with Q ⊕C F and F , respectively, we may assume that R is centrally
closed and C is either finite dimensional or algebraically closed. In a view of
Martindale’s theorem [20], R is a primitive ring having a non-zero socle with
C as its associated division ring.

Since a 6∈ C, we have [a, x] 6= 0 for some x ∈ soc(R). By Litoff’s theorem
[16], there exists an idempotent e ∈ soc(R) such that x, ax, xa ∈ eRe. Note
that ef(eXe)e is a GPI for R. Thus, [(eae), Xn] is a GPI for eRe. Since
eRe ∼= Mm(C) for some m ≥ 1, eae is central in eRe by Lemma 1. It follows
that there exists c ∈ C such that ce = eae. Hence, cx = eaex = eax = ax.
Similarly, xc = xeae = xae = exae = xa. So [a, x] = 0, a contradiction.
Therefore, a ∈ Z(R), as desired. �

Remark. Let us point out that in Proposition 1 we have no restriction on
the characteristic of a non-commutative ring R. But if R is 2n!-torsion free,
then the above proposition is a direct consequence of Theorem 2.1 in [25] (see
also Theorem 3 in [17] for the generalization). Namely, if we define an inner
derivation D : R → R by D(x) = [a, x], then D(xn) = [a, xn]. Therefore, if
[a, xn] = 0, then D(xn)x+xD(xn) = 0 for all x ∈ R and, by [25, Theorem 2.1],
D(x) = [a, x] = 0 for all x ∈ R. Thus, a ∈ Z(R).

Now we are ready to prove our main theorem. In the proof we will use some
ideas similar to those used in [28].

Proof of Main Theorem. By semiprimeness of R, there exists a family of prime
ideals {Pα : α ∈ I} such that ∩α∈IPα = {0}. Without loss of generality, we
may assume that prime rings R/Pα, α ∈ I, are 2-torsion free (see [2, p. 459]).

Now, let us fix an arbitrary α ∈ I. It is sufficient to show that [f(x), x] ∈ Pα

for all x ∈ R. Denote by C the extended centroid of a prime ring R/Pα and



210 AJDA FOŠNER AND NADEEM UR REHMAN

by A the central closure of R/Pα. One can consider A as a vector space over
the field C which can be regarded as a subspace of A. Thus, there exists a
subspace B of A such that A = B +C. Let π be the canonical projection of A
onto B. For x ∈ R we shall write x for the coset x+ Pα ∈ R/Pα. Replacing x
by x+ p in (1) we obtain

[f(p), xn] ∈ Pα

for all x ∈ R and p ∈ Pα. Therefore, [f(p), xn] = 0 for all x ∈ R. Using

Proposition 1, it follows that f(p) lies in the center of R/Pα, which means that

[f(p), x] = 0 for all x ∈ R, p ∈ Pα. In particular, we have πf(p) = 0. This

yields that the mapping f : R/Pα → A, f(x) = πf(x), is well defined. It
is easy to verify that f is additive and satisfies [f(x), xn] = 0 for all x ∈ R.

Using [3, Theorem 1.1] it follows that [f(x), x] = 0 which in turn implies
[f(x), x] ∈ Pα. The proof is completed. �

In [8], Brešar proved that there are no nonzero skew-commuting additive
mappings on a 2-torsion free semiprime ring R. In other words, if R is a 2-
torsion free semiprime ring and f : R → R an additive mapping such that
f(x)x + xf(x) = 0 for all x ∈ R, then f = 0. Motivated by this result, we
conclude our paper with the following conjecture.

Conjecture. Let n ≥ 1 be some fixed integer and let R be a semiprime ring

with suitable torsion restrictions. Suppose that an additive mapping f : R → R
satisfies the relation

f(x)xn + xnf(x) = 0

for all x ∈ R. Then f = 0.

In the case n = 1, the above conjecture has been proved by Brešar in [8].
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