• Title/Summary/Keyword: Additional Machining

Search Result 51, Processing Time 0.023 seconds

A Study on Accelerated Life Test of Hypoid Gear Rotary Reducer (하이포이드 회전감속기의 가속 수명시험 방법에 관한 연구)

  • Yoon, Sang-hwan;Beak, Kwon-in;Kim, Heonkeong;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.63-68
    • /
    • 2017
  • In order to process more complicated and higher-precision parts, generally, an additional axis for a machine tool is needed which was an approach to minimize the cost of tool modification. A table with a rotary reducer that can rotate through the axis of the gear system was employed to a machine tool to achieve the purpose of adding an extra motion axis. In general, the motion of the rotary reducer is driven by a worm/wheel or helical gear system, which is different from the hypoid helical gear structure that used in this research. Reliability of guarantee of high accurancy throughout the whole life cycle is on of the critical factors to evaluate a rotary reducer in this field. In this paper, in order to evaluate life-time of rotary reducer, a low-cost accelerated life test was developed to satisfy the demands of clients.

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

A study on the development of CAM system for turning (선삭가공용 CAM 시스템의 개발에 관한 연구)

  • 양민양;이성찬;최종률;강성균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.529-533
    • /
    • 1996
  • Recently, manufacturing industries are doing their best to increase productivity and to reduce production time. One of tile efforts is to develop user-friendly and effective CAM systems. For this purpose, a CAM system for turning was developed. In the developed system. user interacts with tile CAM system using graphical user interface (GUI) and manufacturing support functions to make NC programs effectively. Manufacturing support functions include cycle decoder. interference check be ween tool and workpicce. bar turning without air cut and dynamic/wireframe simulation. In the cycle decoder. basic options are provided to novices for their convenience. and advanced options are provided to help expert to modify the program using their knowledge. Interference check has been nil issue in tile CAM system for tuning. In this paper. when a user selects a tool. interference check between selected tools and workpieces is done automatically. Moreover. remaining shapes are calculated automatically. Then, tile CAM system requests user to input all additional tool and generates NC codes to cut tile remaining shapes. In bar turning of forged raw material, air cut should be prevented for effective machining. For this purpose, a new algorithm for bar turning was developed. Dynamic and wireframe simulation was used to verify the generated NC code.

  • PDF

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

A study on the risk assessment of the workplaces in the General Sawmill Industry (일반제재업의 작업장소별 위험성 평가)

  • Rhee, Hongsuk;Shin, Woonchul
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.105-112
    • /
    • 2015
  • Sawmilling industry remained a high risk with the average 4.73% of industrial accidents in 2010-2012 that was eight times that of general manufacturing. Sawmilling industry had 200 industrial accidents victim in average. Manufacturing process in sawmill industry contained dangerous machinery such as conveyors, roller, saw ( band saw, circular saw) etc. It may be effective to figure out the type of industrial accidents occurred in the past and extend risk assessment which can predict hazard such as near miss when implementing exposure or potential dangers in sawmill industry. This study conducted research on the actual condition on the place of industrial accident occurrence, detailed work and contact object when injured, and injured part targeting 643 businesses which had industrial accidents in 2010-2012. As the results, RPN of general sawmill industry was the highest 'ganglip saw' with 36,157. RPN of the following order were 'moving truck' with 25,454, 'special machining operations' with 22,283. Also, probability of general sawmill industry was a lots within 1 year, while risk appeared a lots within 5 years. So, risk assessment shall be needed to emphasis on accident prevention of sawmill industry. And additional work will be needed on the risk assessment in hazard prevention work of supervisors.

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

A Study on the Characteristics of Laser Processing in the DLC Thin Film according to Boron Doped Content (보론 도핑 여부에 따른 DLC 박막의 레이저 가공 특성 변화 연구)

  • Son, Ye-Jin;Choi, Ji-yeon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.155-160
    • /
    • 2019
  • Diamond Like Carbon (DLC) is a metastable form of amorphous carbon that have superior material properties such as high mechanical hardness, chemical inertness, abrasion resistance, and biocompatibility. Furthermore, its material properties can be tuned by additional doping such as nitrogen or boron. However, either pure DLC or doped DLC show poor adhesion property that makes it difficult to apply contact processing technique. Therefore we propose ultrafast laser micromachining which is non-contact precision process without mechanical degradation. In this study, we developed precision machining process of DLC thin film using an ultrafast laser by investigating the process window in terms of laser fluence and laser wavelength. We have also demonstrated various patterns on the film without generating any microcracks and debris.

A Study on Fp Z/8 of Anti-Backlash Gear in an Engine (엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구)

  • Zhong, Xing;Lv, Jianhua;Lu, Hao;Zhou, Rui;Guo, Jianyu;Kai, Lang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Restoration of an Edentulous Patient with CAD/CAM Guided Implant Surgery ($NobelGuide^{TM}$) and Immediate Loading: Case Report (무치악 환자에서 CAD/CAM을 이용한 임플란트 식립($NobelGuide^{TM}$) 및 즉시하중 증례)

  • Ko, Kyoung-Ho;Lim, Kwang-Gil;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.233-245
    • /
    • 2011
  • With the use of computed tomography (CT), computer-aided design/computer-assisted machining (CAD/CAM) technology and internet, the implant dentistry has been evolved. The surgical templates made by CAD/CAM technology and precise installation of implants, permit restorations to be inserted immediately after implants have been placed. The advantages of CAD/CAM guided implant procedures are flapless, minimally invasive surgery and shorter surgery time. With this technique, less postoperative morbidity and delivery of prosthesis for immediate function would be possible. A patient with an edentulous maxilla and mandible received 7 implants in mandible using CAD/CAM surgical templates. Prefabricated provisional fixed prostheses were connected immediately after implant installation. Provisional prostheses were evaluated for aesthetics and function during 6 months. Definitive prostheses were fabricated. At 6 months recall appointment, patient's occlusion was slightly changed. To prevent additional adverse effect, regular check-up and occlusal adjustment would be needed.