• Title/Summary/Keyword: Adaptive sampling

Search Result 260, Processing Time 0.026 seconds

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.

Coping Styles about Residential Environmental Stress among Apartment Housing Dwellers - Focus on the Gwangju City - (아파트 거주자의 주거환경 스트레스에 대한 대처방식 유형 - 광주시를 중심으로 -)

  • Noh, Se-Hee;Kim, Mi-Hee
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Rapid social change affects residential environments and this in turn creates new stimuli to which people have to adapt. These stimuli have been seen to increase stress levels. Therefore, dwellers in these environments try to reduce stress through various methods. The purpose of this paper is to: 1) identify the general trends of coping styles about residential environmental stress, 2) analyze the differences in socio-demographic characteristics and how the physical characteristics of buildings affect stress, find out how personal backgrounds affect stress levels and the ability to get rid of environmental-related stress. The subjects in this study consisted of people living in multi-family housing in Gwangju. The city is divided into 5 districts and used quota sampling. 324 housewives were surveyed from the households by self-administered questionnaires. The survey was conducted in December, 2006, after the questionnaire was revised based on the results of preliminary survey. After all the questionnaires were collected, the data was coded and analyzed using the SPSS 12.0 program. This study confirmed that the manner in which those in multi-family housing coped with stress. Especially, we need a policy which seriously considers residents who are of low social-economic standing. As well as being exposed to residential environmental stress, they also have no means to deal with it. The age of a building had a strong impact on coping styles about residential environmental stress. We have to make special studies about the adaptive reuse of buildings for the reduction of residential environmental stress and to greatly improve coping styles. In conclusion, it emphasized the importance of education, information, and economic aid. Reasonable housing management would surely lead to a rise in residential satisfaction and the promotion of residential welfare.

An Adaptive Synchronization by Analyzing the Delay Time of Media (미디어 지연시간 분석에 의한 가변적 동기화)

  • Seo, Yeong-Geon;O, Hae-Seok;Sim, Jong-Chae;Kim, Ho-Yong;Kim, Hyeon-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2801-2811
    • /
    • 1997
  • This thesis Proposes a media synchronization mechanism for video conferencing system by analyzing a variation of the delay time of media. Using this mechanism, this thesis analyzes the media traffics and determines the values of external variables important on waiting time. This system uses some dummy streams to get the time. When two hosts are initially connected, they change the dummy streams by which a logical time of the sender may be extracted. The time presenting a media stream is a sum of base time, logical time and the waiting time. At this time, for the purpose of optimally adjusting the waiting time, this mechanism uses the rate of updating the waiting time and the sampling unit of media. These values are acquired by analyzing the waiting times, the delay rates and the delayed arrival times.

  • PDF

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF

Exterior Vision Inspection Method of Injection Molding Automotive Parts (사출성형 자동차부품의 외관 비전검사 방법)

  • Kim, HoYeon;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.127-132
    • /
    • 2019
  • In this paper, we propose a visual inspection method of automotive parts for injection molding to improve the appearance quality and productivity of automotive parts. Exterior inspection of existing injection molding automobile parts was generally done by manual sampling inspection by human. First, we applied the edge-tolerance vision inspection algorithm ([1] - [4]) for vision inspection of electronic components (TFT-LCD and PCB) And we propose a new visual inspection method to overcome the problem. In the proposed visual inspection, the inspection images of the parts to be inspected are aligned on the basis of the reference image of good quality. Then, after partial adaptive binarization, the binary block matching algorithm is used to compare the good binary image and the test binary image. We verified the effectiveness of the edge-tolerance vision check algorithm and the proposed appearance vision test method through various comparative experiments using actual developed equipment.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma

  • Changsoo Woo;Kwan Hyeong Jo;Beomseok Sohn;Kisung Park;Hojin Cho;Won Jun Kang;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.

A Smoothing Data Cleaning based on Adaptive Window Sliding for Intelligent RFID Middleware Systems (지능적인 RFID 미들웨어 시스템을 위한 적응형 윈도우 슬라이딩 기반의 유연한 데이터 정제)

  • Shin, DongCheon;Oh, Dongok;Ryu, SeungWan;Park, Seikwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2014
  • Over the past years RFID/SN has been an elementary technology in a diversity of applications for the ubiquitous environments, especially for Internet of Things. However, one of obstacles for widespread deployment of RFID technology is the inherent unreliability of the RFID data streams by tag readers. In particular, the problem of false readings such as lost readings and mistaken readings needs to be treated by RFID middleware systems because false readings ultimately degrade the quality of application services due to the dirty data delivered by middleware systems. As a result, for the higher quality of services, an RFID middleware system is responsible for intelligently dealing with false readings for the delivery of clean data to the applications in accordance with the tag reading environment. One of popular techniques used to compensate false readings is a sliding window filter. In a sliding window scheme, it is evident that determining optimal window size intelligently is a nontrivial important task in RFID middleware systems in order to reduce false readings, especially in mobile environments. In this paper, for the purpose of reducing false readings by intelligent window adaption, we propose a new adaptive RFID data cleaning scheme based on window sliding for a single tag. Unlike previous works based on a binomial sampling model, we introduce the weight averaging. Our insight starts from the need to differentiate the past readings and the current readings, since the more recent readings may indicate the more accurate tag transitions. Owing to weight averaging, our scheme is expected to dynamically adapt the window size in an efficient manner even for non-homogeneous reading patterns in mobile environments. In addition, we analyze reading patterns in the window and effects of decreased window so that a more accurate and efficient decision on window adaption can be made. With our scheme, we can expect to obtain the ultimate goal that RFID middleware systems can provide applications with more clean data so that they can ensure high quality of intended services.