본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.
본 논문에서는 새로운 사이드 매치 왜곡 함수를 이용한 적응 FSVQ(Finite State Vector Quantization)방법을 제안한다. 기존의 사이드 매치 왜곡 함수는 블럭 경계 사이의 휘도 천이를 부드럽게 해주고 블럭간의 상관 관계가 높은 평탄 영역에서는 적절한 상태 부호책을 작성할 수 있으나 블럭간의 상관 관계가 낮은 윤곽선 영역에서는 적절한 상태 부호책을 작성할 수 없다. 본 논문에서 제안한 왜곡 함수는 기존의 사이드 매치 왜곡 함수에 영상의 특징을 나타내줄 수 있는 분산 값을 가중치로 사용하여 기존의 사이드 매치 왜곡 함수보다 적절한 상태 부호책을 작성할 수 있도록 한다. 또한 상태를 잘못 예측하였을 경우 이를 정정한 후, 처리하게 함으로써 만족할만한 영상의 질을 얻을 수 있도록 한다.
이 논문에서는 운반차-막대 시스템을 제어하기 위한 CMAC을 이용한 적응 학습 제어계를 개발하기 위하여, 적응비평학습을 이용하는 신경망 제어계에 관한 여러 연구 문헌들을 조사하고, ASE 요소를 이용하는 적응비평학습 기법을 CMAC을 바탕으로 하는 제어계에 통합하였다. 적응비평학습 기법을 CMAC에 구현하는데 있어서의 변환 문제를 검토하고, CMAC 제어계와 ASE 제어계가 운반차-막대 문제를 학습하는 속도를 비교하여, CMAC 제어계의 학습 속도가 빠르기는 하지만, 입력 공간의 더 넓은 영역에 대해서는 학습효과를 발휘하지 못하는 문제의 관점에서 적응비평학습 방법이 CMAC의 특성과 어울리는지를 고찰하였다.
대역폭과 저장장치의 한계 때문에 의료영상은 전송과 저장 전에 압축되어야 한다. 의료영상 표준인 DICOM(Digital Imaging and Communications in Medicine)은 JPEG 정지영상 압축을 지원하는 구조를 제공한다. 본 논문에서는 의료영상을 JPEG으로 압축하기 위한 방법을 설명하고 JPEG 압축을 위한 두 가지 방법을 제안한다. 첫 번째로 의료영상은 자연영상과는 시각적인 특성이 다르기 때문에, 스펙트럼 분석을 이용한 양자화 테이블을 적응적으로 설계하는 방법을 제안한다. 두 번째로 의료영상은 자연영상과 다르게 픽셀당 비트수가 높기 때문에, 심벌들의 확률분포 특성을 고려한 허프만 테이블을 적응적으로 설계하는 방법을 제안한다. 따라서 본 논문에서는 의료영상에 적합한 양자화 테이블과 허프만 테이블을 설계하는 방법을 제안한다. 실험 결과 JPEG 표준의 양자화 테이블과 수정된 허프만 테이블에 비해 성능이 향상되는 것을 볼 수 있다. 본 논문에서 제안한 방법은 JPEG 표준을 만족하므로, PACS (Picture Archiving and Communications System)에 적용될 수 있다.
본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험 결과 제안한 방식의 알고리즘을 로젠블록 함수를 통한 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.
인트라 프레임은 GOP (Group of Pictures)의 처음 프레임을 의미하며, H.264 표준에서 인트라 프레임의 모든 매크로블록은 하나의 양자화 파라미터로 압축한다. 그리고 인트라 프레임은 이후 프레임들을 압축할 때 사용하기 때문에 인트라 프레임의 압축 결과는 전체 프레임 그룹의 화질에 영향을 미친다. 따라서 인트라 프레임을 최적으로 압축할 수 있는 양자화 파라미터를 찾는 것은 화질 개선을 위해 중요한 요소이다. 본 논문에서는 실시간으로 인트라 프레임을 압축하기 위한 최적의 양자화 파라미터를 탐색하는 방법을 제안한다. 제안하는 알고리즘은 최적 양자화 파라미터의 특성에 대한 분석을 바탕으로 경사하강법을 이용하여 실시간으로 최적값을 탐색한다. 실험결과는 제안하는 방법이 최적 양자화 파라미터의 특성을 잘 반영하고 최적값도 정확하게 예측함을 보여준다.
본 논문에서는 경사도 및 새로운 초기값을 이용한 적응 BTC를 제안하였다. 에지부분에서 발생되는 톱니 모양의 문제점을 줄이기 위해 구획의 등급을 결정하는 새로운 계수로서 sobel 연산자의 경사도를 이용하였다. 에지를 포함한 복잡한 영역에서 선택되는 4 레벨 양자화에서 발생되는 심한 양자화 오차를 줄이기 위해서 새로운 초기값을 정의하였다. 컴퓨터 모의실험을 통하여 제안방법이 기존의 적응 BTC보다 계산량이 간단하며, 에지 부분에서 톱니모양의 결점이 감소되었으며, 또한 PSNR이 개선됨을 확인하였다.
This paper proposes an improved image segmentation algorithm by the watershed algorithm based on the local adaptive threshold on local minima search and the fixing threshold on label allocation. The previous watershed algorithm generates the problem of over-segmentation. The over-segmentation makes the boundary in the inaccuracy region by occurring around the object. In order to solve those problems we quantize the input color image by the vector quantization, remove noise and find the gradient image. We sorted local minima applying the local adaptive threshold on local minima search of the input color image. The simulation results show that the proposed algorithm controls over-segmentation and makes the fine boundary around segmented region applying the fixing threshold based on sorted local minima on label allocation.
본 논문에서는, 무선 통신 응용을 위한 광대역 연속시간 시그마-델타 모듈레이터를 130nm CMOS공정으로 구현하였다. 제안된 양자화 레벨을 효율적으로 조절할 수 있는 적응성 양자화기를 사용하여, 작은 크기의 입력에 대해서 SNR의 이득을 볼 수 있었다. 모듈레이터는 전력 소모를 줄이기 위해 2차 루프 필터로 구성되어 있고, 지터에 의한 영향을 줄이고 높은 선형성을 보장하기 위해 4 비트 양자화기, DAC를 사용하였다. 설계된 회로는 320MHz 샘플링 주파수에서 동작하며 10MHz 입력 대역에서 30mW의 전력을 소모하고 최대 SNR 51.36dB를 얻었다.
H.264/AVC에서 각 블록은 블록의 특성을 고려하여 적응적으로 양자화 파라미터(QP)를 선택하여 양자화를 수행한다면, 개선된 화질을 기대할 수 있다. 본 논문에서는, 블록 기반의 적응적인 QP 선택 방법은 주변 블록들의 지그재그 스캔 된 정수 변환 계수의 비트량과 현재 블록의 QP 값 변화를 이용하여 화질을 개선하도록 제안된다. 제안된 방법은 QP 값의 변화를 디코더로 전송하지 않고, 인코더에서와 같은 방법으로 디코더에서 직접 처리한다. 제안된 방법의 실험 결과는 H.264/AVC에 비하여 대략 $0.1{\sim}0.3\;dB$ 정도의 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.