• Title/Summary/Keyword: Adaptive Sliding Mode

Search Result 256, Processing Time 0.031 seconds

Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network (웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

Adaptive Sliding Mode Observer for the Control of Switched Reluctance Motors without Speed and Position Sensors (적응 슬라이딩 모드 관측기를 이용한 SRM의 속도 및 위치 센서 없는 제어)

  • Shin, Jae-Hwa;Yang Iee-Yoo;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.763-770
    • /
    • 2000
  • The speed and position information of the rotor are required in the speed control of SRM(Switched Reluctance Motors). This information is generally provided by shaft encoder or resolver. It is weak in the dusty, high temperature, and EMI environment. Consequntly, much attention has been given to SRM control for eliminationating the position and speed sensors. In this paper, a new estimation algorithm for the rotor position and speed for SRM drives is described. The algorithm is implemented by the sliding mode observer. The stability and robustness of the sliding observer for the parameter variations of the SRM are proved by variable structure control theory. Speed control of the SRM is accomplished by the estimated speed and position. Experiment results verify that the mode observer is able to estimate the speed and position well.

  • PDF

Design of an Adaptive Fuzzy Sliding Mode Position Controller (새로운 적응 퍼지 슬라이딩모드를 가지는 제어기 설계)

  • 박광현;김혜경;이대식
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2002
  • Although the general sliding mode control has the robust property, bounds on the disturbances and parameter variations are known to the designer of the system control. But sometimes these bounds may not be easily obtained. However, fuzzy control provides an effective way to design the controller of the system with the disturbances and parameter variations. Therefore, combination of the best feature of fuzzy control and sliding mode control is considered. When using the conventional VSC, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. In order to overcome these problems, an adaptive fuzzy VSC with sliding surface eliminating reaching phase is proposed. The validity of the proposed scheme is shown by results of experiments for the BLDC motor.

  • PDF

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Design of adaptive model following controller using the theory of variable structure systems (가변(可變) 구조(構造) 시스템 이론(理論)을 적용(適用)한 적응(適應) 모델 추종(追從) 제어기(制御)의 설계(設計))

  • Lee, Kang-Woong;Lee, Hong-Kyu;Choi, Keh-Kun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.60-63
    • /
    • 1988
  • An adaptive model following controller is designed using the theory of variable structure systems. The proposed method allows the designer to satisfy the requirements of short sliding plane reaching time and chattering reduction in the sliding mode. This method is based on the modified condition for the sliding mode. The result of computer simulation shows that state trajectories reach switching plane fast and chattering is reduced.

  • PDF

Design of a Variable Structure Adaptive Model Following Controller (可變 構造適應모델 追從 制御器의 設計)

  • Lee, Kang-Woong;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • An adaptive model following controller is designed using the theory of variable structure systems. The proposed method based on the modified condition for the sliding mode allows the designer to satisfy the requirements to speed up the reaching phase and for the magnitude of the chattering to be reduced in the sliding mode. Chattering reduction is obtained by the replacement of control input in the neighborhood of the sliding plane. The results of computer simulation show that state trajectories reach switching plane fast and chattering is reduced.

  • PDF

Indirect Adaptive Self-Regulating Fuzzy Control of Robot Manipulators Using Sliding Mode (슬라이딩 모드를 이용한 로봇 매니풀레이터의 간접적응 자기조정 퍼지제어)

  • Park, Won-Sung;Yang, Hai-Won;Chung, Ki-Chull;Kim, Do-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1718-1719
    • /
    • 2007
  • In this paper, a fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for manipulators with uncertainties. Especially the system uncertainties is approximated using fuzzy rule adaptation technique. The proposed controller is composed of the equivalent control that includes the approximation of the system uncertainties and the hitting control that is used to constrain the states of the system to maintain on the sliding surfaces and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF

Synchronization of Non-integer Chaotic Systems with Uncertainties, Disturbances and Input Non-linearities

  • Khan, Ayub;Nasreen, Nasreen
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.353-369
    • /
    • 2021
  • In this paper, we examine and analyze the concept of different non-integer chaotic systems with external disturbances, uncertainties, and input non-linearities. We consider both drive and response systems with external bounded disturbances and uncertainties. We also consider non-linear control inputs. For synchronization, we introduce the adaptive sliding mode technique, in which we establish the stability of the controlled system by a control which estimates uncertainties and disturbances, and then applies a suitable sliding surface to control them. We use computer simulations to established the efficacy and adeptness of the prospective scheme.

Adaptive Sliding Mode Traffic Flow Control using a Deadzoned Parameter Adaptation Law for Ramp Metering and Speed Regulation

  • Jin, Xin;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2031-2042
    • /
    • 2017
  • In this paper, a novel traffic flow control method based-on ramp metering and speed regulation using an adaptive sliding mode control (ASMC) method along with a deadzoned parameter adaptation law is proposed at a stochastic macroscopic level traffic environment, where the influence of the density and speed disturbances is accounted for in the traffic dynamic equations. The goal of this paper is to design a local traffic flow controller using both ramp metering and speed regulation based on ASMC, in order to achieve the desired density and speed for the maintenance of the maximum mainline throughput against disturbances in practice. The proposed method is advantageous in that it can improve the traffic flow performance compared to the traditional methods using only ramp metering, even in the presence of ramp storage limitation and disturbances. Moreover, a prior knowledge of disturbance magnitude is not required in the process of designing the controller unlike the conventional sliding mode controller. A stability analysis is presented to show that the traffic system under the proposed traffic flow control method is guaranteed to be uniformly bounded and its ultimate bound can be adjusted to be sufficiently small in terms of deadzone. The validity of the proposed method is demonstrated under different traffic situations (i.e., different initial traffic status), in the sense that the proposed control method is capable of stabilizing traffic flow better than the previously well-known Asservissement Lineaire d'Entree Autoroutiere (ALINEA) strategy and also feedback linearization control (FLC) method.

Adaptive Sliding Mode Control Based on Fuzzy Control Structure (퍼지제어구조 기반 적응 슬라이딩 제어)

  • 유병국;함운철
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.781-787
    • /
    • 1999
  • In this note, we propose two methods of adaptive sliding mode control(SMC) schemes in which fuzzy systems(FS) are utilized to approximate the unknown system functions. In the first method, a FS is utilized to approximate the unknown function f of the nonlinear system $\chi$$^{(n)}$$\chi$=f(equation omitted), t)+b(equation omitted), t)u and the robust adaptive law is proposed to reduce the approximation errors between the true nonlinear function and fuzzy approximator, FS. In the second method, two FSs are utilized to approximate f and b, respectively. The robust control law is also designed. The stabilities of proposed control schemes are proved.

  • PDF