• 제목/요약/키워드: Adaptive Estimator

검색결과 275건 처리시간 0.028초

로봇 GMA용접에 최적의 비드폭 예측 시스템 개발에 관한 연구 (A Study on Development of System for Prediction of the Optimal Bead Width on Robotic GMA Welding)

  • 김일수
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.57-63
    • /
    • 1998
  • An adaptive control in the robotic GMA welding is employed to monitor information about weld characteristics and process parameters as well as to modify those parameters to hold weld quality within acceptable limits. Typical characteristics are the bead geometry, composition, microstructure, appearance, and process parameters which govern the quality of the final weld. The main objectives of this thesis are to realize the mapping characteristics of bead width through learning. After learning, the neural estimation can estimate the bead width desired form the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead width with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.

연속 음성 인식 향상을 위해 LMS 알고리즘을 이용한 CHMM 모델링 (CHMM Modeling using LMS Algorithm for Continuous Speech Recognition Improvement)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.377-382
    • /
    • 2012
  • 본 논문은 반향 제거 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인한 연속 음성 인식 모델인 CHMM 모델을 구성하는 방법을 제안하였다. 변화하는 반향 잡음에 적응하고 연속 음성 인식 성능 향상을 위한 반향 잡음 제거 평균 예측 LMS 알고리즘을 이용하여 CHMM 모델을 구성하였다. 제안한 알고리즘에 의해 구성된 CHMM 모델에 대하여 연속 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 1.93dB이 향상되었고 연속 음성의 인식률은 2.1% 향상되었다.

적응 뉴로-퍼지 파라미터 추정기를 이용한 유도전동기의 간접벡터제어 (Indirect Vector Control for Induction Motor using ANFIS Parameter Estimator)

  • 김종홍;김대준;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2374-2376
    • /
    • 2000
  • In this paper, we propose an indirect vector control method using Adaptive Neuro-Fuzzy Inference System (ANFIS) parameter estimator. It estimates the rotor time constant when the indirect vector control of induction motor is applied. We use the stator current error that is difference between the current command and estimated current calculated from terminal voltage and current. And two induced current estimate equations are used in training ANFIS.The estimator is trained by the hybrid learning algorithm. Simulation results shows good performance under load disturbance and motor parameter variations.

  • PDF

Sensorless Vector Controlled Induction Machine in Field Weakening Region: Comparing MRAS and ANN-Based Speed Estimators

  • Moulahoum, Samir;Touhami, Omar
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.241-248
    • /
    • 2007
  • The accuracy of all the schemes that belong to vector controlled induction machine drives is strongly affected by parameter variations. The aim of this paper is to examine iron losses and magnetic saturation effect in sensorless vector control of induction machines. At first, an approach to induction machine modelling and vector control scheme, which account for both iron loss and saturation, is presented. Then, a model reference adaptive system (MRAS) based speed estimator is developed. The speed estimation is modified in such a way that iron losses and the variation in the saturation level are compensated. Thus by substituting an artificial neural network flux estimator into the MRAS speed estimator. Experimental results are presented to verify the effectiveness of the proposed approach.

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

Estimation of Parameters of a Two-State Markov Process by Interval Sampling

  • Jang, Joong-Soon;Bai, Do-Sun
    • 한국경영과학회지
    • /
    • 제6권2호
    • /
    • pp.57-64
    • /
    • 1981
  • This paper develops a method of modifying the usual maximum likelihood estimators of the parameters of a two state Markov process when the trajectory of the process can only he observed at regular epochs. The method utilizes the limiting behaviors of the process and the properties of state transition counts. An efficient adaptive strategy to be used together with the modified estimator is also proposed. The properties of the new estimators and the adaptive strategy are investigated using Monte Carlo simulation.

  • PDF

Comparison of Lasso Type Estimators for High-Dimensional Data

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.349-361
    • /
    • 2014
  • This paper compares of lasso type estimators in various high-dimensional data situations with sparse parameters. Lasso, adaptive lasso, fused lasso and elastic net as lasso type estimators and ridge estimator are compared via simulation in linear models with correlated and uncorrelated covariates and binary regression models with correlated covariates and discrete covariates. Each method is shown to have advantages with different penalty conditions according to sparsity patterns of regression parameters. We applied the lasso type methods to Arabidopsis microarray gene expression data to find the strongly significant genes to distinguish two groups.

모형화 오차를 고려한 강인한 적응제어기의 설계 (Design of A Robust Adaptive Controller under Modeling Error)

  • 공재섭;김재민;양흥석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.80-83
    • /
    • 1988
  • In this paper a robust control law is presented which stabilezes overall system via pole reassignment and loop-shaping. A robust adaptive controller is designed combining this robust control law and a robust estimator.

  • PDF

적응제어에서의 오프셋 영향 제거 (Offset elimination in adaptive control)

  • 최두환;김영철;양홍식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.236-241
    • /
    • 1988
  • This note considers the class of controllers with integral action which arise directly from appropriate system models. Via internal model principle approach, a corresponding class of self-tuning controller is shown to have both integral action in controller and offset removal in the tuning algorithm. The key idea is to constrain the estimator in each step in order to ensure that dc gain of feedforward and feedback polynomial of adaptive controller are always equal, thus allowing the loop integrator to work properly.

  • PDF