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Markov Process by Interval Sampling
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Abstract

This paper develops a method of modifying the usual maximum likelihood estimators of
the parameters of a two state Markov process when the trajectory of the process can only
be observed at regular epochs. The method utilizes the limiting behaviors of the process and
the properties of state transition counts. An efficient adaptive strategy to be used together
with the modified estimator is also proposed. The properties of the new estimators and the
) adaptive strategy are investigated using Monte Carlo simulation.

. Introduction

Consider an alternating renewal process {X(¢), >0} with states 0 and 1. It is assumed
that the process is in state 0 for a time T, which has an exponential distribution Fo(f)=1—
exp(—A¢) and is then in state 1 for a time T; which has an exponential distribution F,(¢) =1
—exp(—put). It returns to state ¢ for a time given by F,(¢), then to state 1 for a time given
by F;(¢). Such a process is referred to as an alternating Poisson process [4].

The purpose of this paper is to estimate the parameters A and y, efficiently. If the trajec-
tory of the process can be observed continuously, the parameter estimation is straightforward,
for it is possible to write down the likelihood explicitly. In many situations, however, it is
not possible to observe the process continuously; rather observations are taken at regular or
irregular epochs. We are interested in the sampling at regular intervals. This might arise,
for example, if the process were used to represent the use or idle time of an industrial
facility; sampling may take place only once an hour or once a day. A random telegraph
signal whose values are +1 and —1 successively, and a model for semiconductor which can
be either in a trapped state or in a free state are also applications.

Suppose that X (¢) is the state of the process at time ¢, and observations are taken at equal
intervals 4. We then obtain a sample X (0), X(4), X(24), - ., which consists of a sequence
of zeros and ones. This process is a two state Markov chain with transition matrix, taken in
the usual sense that p;; is the probability of a transition from state 7 to state j,
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Pm:T_ﬁ-/j{l'—exP(*‘ QA+p) DY, poo=1—po, (1.1)
ﬁ10=7ﬁ7{1“e}(p<*(l+ﬂ)d)}, pu=1—pie. (1.2)
Note that p,; and p,, should satisfy the relationship
0<pos + p10<1 (1.3)

for all positive values of A and g,

If the sampling interval 4 is given, we see that there is a one to one correspodence be-

tween (2, 1) and (o1, P10). The problem of estimating the parameters (4, x) is then equiva-
lent to the problem of estimating the transition probabilities (pg;, p1e) in the Markov chain
given above.
" Brown et al. [2] have studied this problem and constructed the maximum likelihood esti-
mators. Their simulation results show that as the product of the parameter and the sampling
interval 4, A4 (or pd), becomes large, the MLE’s give little information and are likely to
fail to satisfy the relationship (1.3).

They have suggested an adaptive strategy to obtain estimators satisfying the relationship
(1.3) [3]. They reduce the sampling interval to one half if there exist no estimators of 2 )
and g, and keep on reducing it to one half of the previous one until the estimators seem to
be acceptable. Using their adaptive strategy, however, has some shortcomings: First, it
requires too many observations, particularly when the true parameter is relatively large.
Second, if the estimates seem to be acceptable, all samples obtained are combined to get
final estimates of the parameters. However, the combined estimates require a lot of compu-
tations. ,

In this paper, we develop estimators different from the MLE’s by modifying the sample
transition counts through least square adjustment methods to satisfy the relationsphip (1.3).
We also propose an adaptive strategy for obtaining these estimators to overcome the short-
comings of Brown et al.’s.

I. Maximum Likelihood Estimation

Suppose that a sample of size n, X(0), X{(J), -+ , X((n~1)4), is observed. Let p be the
probability that the initial state of the process is 1 and g=1—p Then we have the likelihood
L= pX Ogql=X © g Tuapy, g, Tup, Ma, 2.1

where x;; is the number of state transitions from state ¢ to state j, (7, j=0, 1). Therefore,
the maximum likelihood estimators (o, o) 0f (f01, p1o) are

o= —a__ . 2.2

and

i’xo = —‘—nﬂ’—‘ ‘ (2. 3)



Example 1. Suppose that we observe the following sequence with 4=1.
110001000001 1111111111110
0110000000010011010111000

Here n=50, n0b=17, no1=7, 71,=8, n,;,=17. Therefore, p,;=0.2917 and p,,=0.32. Hence,

N Y A N—
A= — 5-2s—log (1= Pu—hio) =0.4511,
____bu L
== 5. 108 (1= Por—D1o) =0.4949.

Example 2. Suppose now that the following sequence is observed with 4=1,
0000101000:100111000110000
0011011011001010110001001

. Here n=50, n0=17, #a=183, n1o=12, n,=7. We cannot obtain the maximum likelihood
estimators of A and g, for Po+ Pio=0.4334+0.6316>1.

Brown et al. [2] have studied this problem by Monte Carlo simulation, which exhibited a
high frequency of Py +pio>1. Two conclusions were drawn from their studies;

a) If the ture A*=24 (oru*=ud) were any value greater than 1, the expectation of the
estimate A* (or #*) would be approximately 1, thus working backward, an apparent estimate
near 1 gives little information of the true value.

b) Reasonable confidence limits for A* could be found only when A* became small, say

roughly less than 0. 4.

. Modified Estimation

As in Example 2, there are cases where no estimators exist. Even if they do, their values
tend to be quite different from the true parameters. The reason why estimators for A and g
do not exist may be that the samplng interval 4 is relatively long so that we cannot observe
all of the state transitions. Therefore, we modify these transition counts considering the
sample transition counts and those missed. Denote the modified transition counts of #; by
m;;. Then the modified likelihood is given by

L=pX®giX @y Moop Morpy, miop, M, ’ (3.1)
This equation has the same form as (2.1). Therefore, the modified estimators of p, and pi,
are

o__ Moy

Do gt oy 3.2)
o._ Mg

po = e (3.9)

The problem is how to obtain those modified transition counts. We used a method of least
square adjustment [5] which is useful in many situations.

Minimize _ .
mii(i’ ]=O, l) S_%’%v(mll nl]) /7’1”_ (3'4)

The following constraints are imposed on these transition counts: First, since the sum of all
original sample transition counts is #—1, the modified transition counts should satisfy the
same relationship,



2Zmij=n—1. : (3.5)
1}

Second, as the sample size » becomes large enough, the number of jumps from state 7 is

approximately
I (n—Dlim Pr{X () =4). 3.6)
Hence, We choose the modified transition counts to satisfy the following relationship,
%’m;,:(n—l)n',-, (=0, 1) 3.7
where
To=pt/ (A+ 1)
=2/ (A4 10).
Third, the new estimators must satisfy the relationship (1.3),
0<bo® +510° <L
and hence, the modified transition counts must satisfy the constraint
Mo 1Mo <Mooy, (3.8)

Fourth, since we assume that the parameters 2 and g have positive values, the modified
transition counts are assumed to be positive.
Consequently, we choose m;; (7, /=0, 1) as follows.
Minimize ZZ(m;j—n;;)z/nij
M ti
subject to
2Zmij=n—1,
17

Zmij=(n—Dm; (=0, 1),
J

Moo+ K =moomyy,
mi;i >0, (4, j=0, 1)
where K is a positive slack variable.
This is a well known quadratic programming problem with one redundant constraint, Zr;

=1. Deleting the redundant constraint, the optimal solutions are given by

e D () L] @

where
A=1/ng0+1/761+ 0%/ 010+ 0%/ 211,
p=2/p.

The optimal solutions are functions of p and K whose values must be determined explicitly.
The values of p can be estimated through the method of maximum likelihood. The MLE of
pis

p=mng (7110'*'7111) [#10(R0+ Mor). (8. 11)

The value of K is important, but is not easy to determine. Qur simulation study, however,
shows that the value of K varies with the estimates of the transition probabilities and p. If
the value of p is near 1, the following eguations are recommended

K=max{f(s, p n), €



where
f(s, oo m)=(n—1)*(a+bs)p/(1+5)*,
(a, B) =/(0,990453, —0.8795)  if n=50,
{(0. 988790, —0.9250) if »=100,
S=f’ox+i’10,
&; arbitary small value smaller than 1 (107° in our simulation study).

The parameters 4 and g can now be uniquely determined. However, our simulation results
show that the modified estimators are biased although they always exist. (See Fig. 1 and
Fig. 2).

A4

A4
4.0f 4.0F
3. 0b impossible 20k impossihle
- NS
2.0 2 'F possible
possible
1.0p 1.0
45 1 1 i [ 45° s L N 2
1.0 2.0 3.0 4.024 1.0 2.0 20 4.024
Fig. 1. Modified estimator with #2=50 Fig. 2. Modified estimator with »=100

Fig. 1 and Fig. 2 show the average values of the modified estimators. Here a “possible”
case represents the case where we can obtain the MLE and an “impossible” case where we
cannot. Comparing these values with the M.L.E’s, however, we see that the modified estim-
ators are better than M.L.E’s. If it is not possible to obtain more samples or to reduce the
sampling interval 4, the value of the modified estimator is the only information we can
take from the samples, for the M.L.E’s of 4 and u¢ often do not exist.

To reduce the biases, an adaptive strategy may be used. The adaptive technique developed
by Brown et al. [3], however, requires many samples and a lot of computations. Hence, we
develop a new adaptive strategy to overcome such shortcomings using the modified estimators.

V. Adaptive Strategy

In interval sampling the value of the interval length is crucial and must not be too large.
If it is larger than 1/g or 1/A which are average sojourn times in state 0 and 1, respectively,
we are likely to fail to observe all state transitions. Hence, the value of the interval length
should be determined to obtain accurate estimates efficiently.



Our simulation result which agrees with Brown et al.’s [2] shows that the maximum likeli-
hood estimate of A4 (or pd) is good when it is smaller than roughly 0.4. Thus, in our
adaptive strategy the modified estimators are used to obtain a suitable value of the interval
length in stage 1 and the parameters are estimated through the method of maximum likeli-
hood in stage 2.

Adaptive Strategy

Stage 1. Write A,*=214, and p,*=pd, Take a sample of size from the process. Estimate
the parameters A,* and g,* by the method of maximum likelihood. If these estimates are
both less than 0.4, accept them. If they are too large or do not exist, obtain the modified
estimates of A,*° and s*° by the method of Section ¥. Determine 4, so that 4,*°4,<0. 4 and
A*°d,<0. 4.

Stage 2. Take a second sample from the process with interval length 4,. Use only stage 2
sample to estimate A,*=2ad, and g,*=pd, by the method of maximur likelihood, If the MLE's
exist, accept them as final estimates. If they do not, obtain the estimates of A,*° and g,*¢
by the method of Section § and accept them as the final estimates.

V. Monte Carlo Study

The behaviors of the MLE and the proposed adaptive strategy are investigated using Monte
Carlo simulation. Without loss of generality we take the sampling interval 4 to be 1, The
sample size considered are 50 and 100.
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Fig. 3. MLE with #=50 Fig. 4 MLE with »=100

Fig. 3 and Fig. 4. show the behaviors of the MLE's. The bold line represents the average

values of the estimates.



Table 1. Number of impossible cases out of 500 experiments for p=1

A
k& 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 22 25 28 30 32 35 3.8

50
100

0 1 46 106 140 . 203 23 263 274 272 289 269 289 266 273
0 0 6 49 107 162 218 228 261 249 262 265 277 280 276

These figures show that the MLE’s give little information for large values of the true
parameter.

Table 1 shows the number of cases where MLE’s do not exist out of 500 experiments,
which increases as the true parameter does.

Fig. 5 and Fig. 6 show the behavior of the proposed adaptive strategy. We take the initial
sampling interval 4; to be 1. The bold line represents the average value of the estimates as
before.
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From the figures, we can see that the estimates are better than MLE’s in average values
although only two stage samples are used; the expectation line (bold line) approaches to the
line which goes through the origin with slope 1.

V[. Discussion

In estimating the parameters of a two state Markov process by interval sampling, freque-
ntly MLE’s cannot be obtained. To overcome such shortcomings of the classical MLE’s,
sample transition counts are modified to obtain new estimators that always exist. An adaptive
strategy using these estimators is also proposed. These are effective when the true parameters
seem to have relatively large values.

The modified estimators, however, depend largely upon the value of K, which in turn should



be determined empirically for different values of p. The method will then also provide better
éstimates than the MLE’s when the values of the true pameters are small.
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