The Korean Communication
in Statistics Vol. 12 No. 3, 2005
pp. 713-727

Adaptive Regression by Mixing for Fixed Design

Jong Chul OhV), Yun Lu?), and Yuhong Yang3)

Abstract

Among different regression approaches, nonparametric procedures perform well
under different conditions. In practice it is very hard to identify which is the best
procedure for the data at hand, thus model combination is of practical importance. In
this paper, we focus on one dimensional regression with fixed design. Polynomial
regression, local regression, and smoothing spline are considered. The data are split
Into two parts, one part is used for estimation and the other part is used for
prediction. Prediction performances are used to assign weights to different regression
procedures. Simulation results show that the combined estimator performs better or
similarly compared with the estimator chosen by cross validation. The combined
estimator generates a similar risk to the best candidate procedure for the data.

Keywords : ARM, Model Selection, Performance Criteria

1. Introduction

Regression analysis is a popular statistical technique. Regression estimation includes
parametric and nonparametric ~approaches. Parametric approaches are simple, better
interpretable, and highly efficient when the chosen models are appropriate. However,
parametric methods can fail when the true form of the regression function f is wrongly
specified. Parametric approaches also have the disadvantage of lacking flexibility. Another
collection of procedures is nonparametric regression techniques including smoothing (smoothing
spline, etc.) and parametric approximation (in terms of polynomials, etc.). Nonparametric
regressions are more flexible compared with parametric methods. In this paper, we focus on
nonparametric regressions.

Since various methods are available, we need to decide what is the right method for the
data at hand. Several model selection criteria have been proposed, including Akaike information
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criterion (Akaike 1973), Baysian information criterion (Schwartz 1978), cross—-validation (Stone,
1974), etc. However, model selection can generate a rather unstable estimator. A very different
model can be selected because of a small perturbation of the data. Estimators of the
regression function based on model selection often have large variance due to the unstableness
of the model selection.

An alternative to model selection is model combination. Yang (2000) has shown that given
several regression procedures, a properly combined procedure behaves asymptotically as well
as the best procedure in terms of rate of convergence under Gaussian errors. Yang (2001)
proposed a practical algorithm with theoretically proven properties. The combination method is
adaptive regression by mixing (ARM), which is used to combine estimators of a regression
function based on the same data. The algorithm can be used when there are multiple
candidate error distributions and does not require normality. Yang’'s results showed that under
mild conditions, the combined estimator performs optimally in rates of convergence.

The work of Yang (2001) focused on random design. The goal of this creative component is
to provide a practically feasible weighting method for one-dimensional regression with fixed
design. Three nonparametric regression approaches are considered (polynomial regression,
smoothing spline, and local regression). The creative component is organized as follows. In
next section, we present the preliminary knowledge about different regression procedures.
Then, the proposed combing method is compared to the model selection methods such as
cross—validation and generalized cross-validation in simulations. Section 4 is the result of a
real data set. Finally, a conclusion follows in section 5.

2. Some Preliminaries
2.1 Regression Analysis

Let us suppose #n observations are taken on a random variable Y at # predetermined
values of independent variable X. Let (x;,Y,), i=1, -, n, be the values of X and Y

which result from this sampling scheme and assume that the dependent variable Y differs
from Ax,;) by a random quantity o(x;) - &; The equation Y;=Ax)+a(x) - €; i=1,",n,
is a regression model in which f is the unknown regression function. € is an uncorrelated

random error with zero mean, and the unknown function o(x) controls the variance of the

random error given X=wx. If we assume o(x;) are the same for all the x;'s, the
regression model can be written as Y;= Ax)+e¢; i=1,-,n, where ¢ has zero mean and a

common variance 0°.

Regression estimation includes parametric and nonparametric approaches. A parametric
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regression model assumes that the form of f is known except for finitely many unknown
parameters. In nonparametric regression, it is not assumed that f takes parametric form
which gives us great flexibility. Nonparametric regression techniques rely more heavily on the
data for information about f than their parametric counterparts. Nonparametric estimators are
less efficient than parametric estimators when the parametric models are valid and simple.

However, if an incorrect parametric model is used, the nonparametric regression techniques
will be much better than parametric methods.

In this paper, we will focus on the three regression methods: polynomial regression, local
regression, and smoothing spline.

2.2 Performance Criteria

Suppose there are several families of estimators for the regression function. Since the
selection of an estimator can be made subjectively, an objective choice will usually be

preferred. Suppose we consider a class of estimators for f, C(A)= {f;: A€ A}, with A
representing some index set. The problem to be considered is selection of a best estimator f;

of f from among the elements of {f;: A=A}. There are certain criteria which are widely
accepted and used.
The loss in estimating f on [0,1] is defined as

L(A) = [(f(x) = Fu(x)) e

L(2) represents a natural measure of the closeness of 7; to f The expected value of L(A)

is called the risk, i.e.

R(A)=EL(A)
Both L(A) and R(A) provide assessments of an estimator’'s performance with smaller values
of the criteria being indicative of better estimation. A value of A that minimizes the loss
provides a best estimate of f among those considered A’s for the particular data set in
question while the value of that minimizes the risk can be viewed as the best for prediction
of future responses or estimation of f in repeated sampling.

Of course, the risk is unknown since it depends on the unknown regression function f.
Monte Carlo methods can be used to simulate the risk. In our case, a large number of new x
values (nxnew = 500), say X, 1<7<500, are generated independently from the uniform
distribution on [0,1]. The loss of the estimator can be calculated by

n.xnew

2 XD Faa(X)?
i=]
500
The procedure is repeated runct times and the risk is estimated by the average of the loss

L=
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runct

=
runct

2.3 Polynomial Regression

Polynomial regression estimators represent an important cornerstone in the theory of

nonparametric regression. To estimate f , the model Y,= Ax,)+e¢; i=1,",n, Ole( e

{x,<1 can be rewritten in an alternative form (Eubank, 1988)
m—1 .
Y= 20 B+ rem(x) + €;
=
with rem(x)=[(m=111 7" [£ ) (x= 97 'dt

N m—1 X
If the rem(x;) can be assumed to be small, we can estimate f using f= 20 bx), and the
~

estimator f will be called an mth order polynomial regression estimator.
2.4 Smoothing Spline

Splines are generally defined as piecewise polynomials (Eubank, 1988) in which curve (or
line) segments are constructed individually and then pieced together. In a spline model, a
turning point is represented by a spline knot. There are different types of splines. A
smoothing spline results, generally, from minimizing

- Ay, 2 I _df™(x) 12
S = Ry~ e+ [ 1 -4L2E T
where 0<x,<x,<--<x,<].

The minimization of S(f) produces the function f. Before that minimization can be obtained,
however, the smoothing parameter A and m must be selected. The value of m determines the
order of the smoothing spline. The value of A determines the amount of smoothing and thus
governs the tradeoff between smoothness and goodness-of-fit. If A=0, we would then be
attempting to minimize the residual sum of squares. If A—oo, the smooth approaches the

least squares line. The value of A is often selected by cross validation.
2.5 Local Regression
Local regression was called locally weighted regression (Stone, 1977; Cleveland, 1979). In

local regression the size of a neighborhood is referred to as the bandwidth and the
neighborhoods are overlapping. The objective of local regression is to identify the model that
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is appropriate for each data segment. Local regression is used to model a relation between a
predictor variable (or variables) X and response variable Y, which is related to the predictor
variables. For a fitting point x and a bandwidth hA(x), only observations within window

(x-h(x), x+h(x)) are used to estimate f{x). The weights for the x; depend on their distance

from x. Specifically, the weight assigned to x; for obtaining the predicted value at x is

w;(x) = W(xi —X]
h(x) ),
where W(.) is a weight function that assigns largest weights to observations close to x and
assigns zero weights for observations outside the window. Within the smoothing window, f(x)
is approximated by polynomial.

The bandwidth A(x) has a very important impact on the local regression fit. If A(x) is too
small, insufficient data fall within the smoothing window, unnecessarily large variance will
result. On the other hand, if A(x) is too large, important features of the mean function f(x)
may be distorted or loss completely due to over smoothing. The fit will have large bias. The
bandwidth must be chosen to compromise this bias-variance trade-off. The simplest case is to
choose a constant bandwidth A(x)=h. Another way is to choose A(x) so that the local
neighborhood contains a specified number of points #ea, and this method is called nearest
neighbor bandwidth. This method can reduce the problems caused by data sparsity.

2.6 Regression Functions Considered

In this creative component, the regression setting Y;= Ax)+e; with fixed design points
%;=1i/n are considered, where 7i=1,2,...,n. The error term ¢ is assumed to follow

normal distribution with mean 0 and variance ¢° (unknown). Our goal is to estimate the
regression function f based on data Z"=(x;, Y;)"—,. Suppose there are J different

regression procedures to estimate f Adaptive regression by mixing (ARM) is used for
combining different procedures. In the next two sections, we demonstrate applications of ARM
for simulation data and real data.

The true underlying regression function is the following functions on [0,1]:

2
f(x)=1+8x%+ ae® + ce 20008 _

The sample size is taken to be n=100, a=0 and I, b=0.1 and I, ¢=0, 0.1, 1, and 2, and 0=05,
1, and 15. The squared L, risk is used as a measure of discrepancy in estimating the
regression function. The squared L, loss is simulated using nxnew=500 new independent

X pew's from the uniform distribution between [0,1]. The squared L, risk is computed based

on runct=200 replications. All the simulations are conducted using Splus 2000. Typical
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realizations of

data are plotted in Figure 1.
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a=1, b=1, c=2, sigma=0.5 a=1, b=1, ¢=2, sigma=1

x.ini x.inl

<Figure 1> A typical realization of data for Ax) =1+ 8x°+ ae *+ ce ~200(x—0.8)*

3. ARM by Systematic Half-half Splitting

In this section, we demonstrate applications of ARM for simulation data for
2
F(x) =1+8x2 + ae® + ce 2008
where a=0 and I, b=0.1 and 1, ¢=0, 01, 1, and 2, 0=05, 1, and 15 Our goal 1s to estimate

the regression function f based on data Z"=(x;, Y))".,. We consider three regression

methods: polynomial regression (j=I), smoothing spline (=2), and local regression (j=3). The
order of polynomial regression is chosen by AIC. We use the default choice of generalized
cross—validation for choosing the smoothing parameter for smoothing spline. The bandwidth of
local regression is selected by generalized cross—validation.

In this section, adaptive regression by mixing (ARM) is used for combining different
procedures. Generalized cross-validation and cross—validation are used as criteria to do model
selection. The following sections explained the detailed procedures.

3.1 ARM Using Common ¢“( ARMC)

In this section, we systematically split the data into two parts according to the x values.
The first part is used for estimation by each regression procedure and the second part is used
to assess the prediction performance and assign weights to regression procedures. In order to

assign weights to different procedures, we need to estimator 6%, In this section, we use one

common estimator o° for all different regression procedures. We assume the observations are
ordered in x. The detailed combining procedures are the following:

Step 0. Obtain estimates ?,U-(x, Z) based on data Z"=(x;, Y;)%~,, using regression
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procedure j, j=1, 2, 3.
Step 1. Split the data into two parts

ZO = (x5 Yy 1)n/2, z® = (xzzsyzz)n/z
Rearrange the data so that Z = (x;, Y)"_ 1, Where zW = (x;, Y)"2 1, and
Z® = (x;, Y) e pjas1 -
Step 2. Obtain estimates '}‘,,/2, iz M) pased on ZV for j=1, 2, 3.
Estimate the variance function ¢ by

) 1 n/2-1

Cune = 2i2-1) & Z( G+1) Y(Z))

where Y(; denotes the observed response at the ith smallest x value (Rice, 1984).

Step 3. For each j, evaluate predictions. For Z‘®, predict Y,/ by 7,,/2, j(x;). Compute

(2z)™* exp( - Z«Y Furay (XD 1(267,,.)

/241
Ef = An/2
n/2,c
. . E;
Step 4. Compute the current weight for procedure j. Let W,=—3 .

wE

Step 5. The final estimator is

~ 3 ~
f(x)= Z ijn,j(x)
Jj=1

3.2 Model! Selection Using Cross—validation

Instead of using ARM to obtain combined estimator, we can use cross—validation to do
model selection. The data are split into two parts. We use the first part of the data to do
estimation and use the second part of the data to assess prediction. Prediction residual sum of
squares is used as a criterion, and the model generates the smallest prediction residual sum of
squares is selected.

3.2.1 Cross—validation with Systematic Half-half Splitting (CV)

In this section, half of the data is used for estimation and the other half for prediction.
Step 0. Obtain estimates 7, ;(x% Z) based on data Z”=(x;, Y)%-,, using regression
procedure j, j=1, 2, 3.
Step 1. Split the data into two parts as described in Step 1 of section 3.1.
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Step 2. Obtain estimates f 5 ;(% Z WY based on ZV for j=1, 2, 3.

Step 3. For each j, evaluate predictions. For Z (2), predict Y, by 7n/z_j (x,).

CV is used as a criterion to select the best regression procedure.

CV (i) = 3 W= Furn, ()

i=n/2+1

Step 4. The final estimator is 7, ;(x; Z), with procedure j generating the smallest CV.
3.2.2 Cross—validation with 1/4 of The Data for Estimation (CV1)

In this section, one the fourth of the data is used for estimation and 3/4 of the data is used

for prediction. The model selection procedure is the same as in section 3.2.1 except Step 1.
The new Step 1 is as follows:

Step 1. Split the data into two parts Z‘V = (x ai—3> Y 4_3) ’}/;‘1, Z® are the rest of the
data. Rearrange the data so that Z =(x;, Y%, where Z®¥=(x;, Y)"1,, and

i=1,
z®P= (xz Y;’)"i=n/4+1 .
3.2.3 Cross-validation with 3/4 of The Data for Estimation (CV2)

In this section, three the fourth of the data is used for estimation and 1/4 of the data is used
for prediction. The model selection procedure is the same as in section 3.2.1 except Step 1.
The new Step 1 is as follows:

Step 1. Split the data into two parts Z® = (x45, Yy ",/il, ZW are the rest of the data.
Rearrange the data so that Z = (x;, Y)"_,, where ZW = (x;, Y'i)3n/4 and

i=1»
z% = (x;, Y;')'li=3n/4+1-
3.3 Model Selection Using Generalized Cross—validation (GCV)

The generalized cross validation criterion was first proposed in the context of smoothing

splines by Craven and Wahba (1979). This provides an approximation to cross validation and
is easier to compute.

Step 0. Obtain estimates f, ;(% Z) based on data Z"= (x;, Y;)";=;, using regression
procedure j, j=1, 2 3.
Step 1. GCV is used as a criterion to select the best regression procedure.



722 Jong Chul Oh, Yun Lu, and Yuhong Yang

(Y = fu, (202
(n-df)?

For polynomial regression, df=polynomial order+l for smoothing spline, df=tr(S), S is

n

GCV (f, ;)= nL=L

the implicit smoother matrix; for local regression, df= v;= t»(L), where »nx# matrix
L maps the data to the fitted values.
Step 2. The final estimator is 7,1, i(x; Z), with procedure j generating the smallest GCV.

3.4 Simulation

In this section, simulation is conducted for

2
f(x)=1+8x% + ae* + ce™200-08)

where a=0 and 1, b=0.1 and I, c=0, 0.1, 1, and 2. When a=0 and c¢=0, the function is
quadratic; when a+0 and c=0, the function is a combination of quadratic and exponential;
when c¢#+0, the function has one hump, and the size of the hump is proportional to the value
of ¢. The above a, b, and ¢ values are chosen in order to compare the performance of
different regression procedures and to compare model combination with model selection for
different functions.

The following are some simulation.

<Table 1> Ratios of the risks of CV, CV1, CV2, GCV to ARMC. The means and medians are
calculated over all the 36 combinations of various a, b, ¢ and sigma.

cv/ARMC cvl/ARMC cv2/ARMC gcv/ARMC
mean 1.0741 1.0895 1.0971 1.0733
s.e. 0.0040 0.0106 0.0062 0.0164
median 1.0723 1.1053 1.0908 1.1018

From Table 1, we can see that the means and medians are bigger than 1. The results
suggest that in average ARMC generates smaller risks compared with model selection criteria
CV, CV1, CV2, and GCV. It seems clear that ARMC is a better method above the averagely.

Table 2 is listed below to illustrate the performance of model selection criteria and ARMC
for different functions. "Poly” stands for polynomial regression, "locreg” stands for local
regression, and "smsp” stands for smoothing spline.

From Table 2, we can see that the performance of CV, CV1, CV2, and GCV is not very
consistent. The result supports that model selection can generate unstable estimators.

ANOVA is conducted for the ratios of the risks of CV, CV1, CV2, GCV to ARMC and the
results are listed below in Table 3. Because the effects of a and b values on the ratios are

not significant, we only include the output for ¢, ¢, and the interaction of ¢ and @.
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<Table 2> Comparing model selection with model combination for different functions

and different ¢ values.
a=1, b=1, ¢=0, runct=200

o poly locreg smsp cv cvl cv2 gcv ARMC
05 risk .0094 0131 0158 0117 0124 0122 0132 0109
s.e. .0006 .0008 .0009 .0007 0007 0007 .0009 .0006
1 risk 0376 .0507 0596 0482 0483 0463 0536 0432
s.e. .0020 0031 0038 0029 0028 .0028 .0038 0023
15 risk .0864 1121 1171 1117 1126 .1048 1070 1010
s.e. 0052 0055 0062 0063 0060 0057 0062 0054

a=1, b=1, ¢=0.1, runct=200

o poly locreg smsp cv cvl cv2 gcv ARMC
05 risk 0089 0124 0139 0113 0119 0111 0117 0102
s.e. 0005 0007 0007 0006 .0007 0006 .0007 .0005
1 risk 0355 0502 0536 0418 0489 0439 0494 0402
s.e. 0021 .0029 .0031 0027 .0030 0027 0030 .0023
15 risk 0774 1073 1058 0926 1008 0962 0973 .0883
s.e. 0056 0064 0061 0055 0064 0067 .0063 .0053

a=1, b=1, c=1, runct=200

o poly locreg smsp cv cvl cv2 gev ARMC
05 risk 0582 0293 0285 0331 0302 0358 .0290 .0303
s.e. .0006 .0008 .0008 0012 .0009 0011 .0009 0009
1 risk 0929 .0866 0839 .0873 .0890 0864 0877 0796
s.e. .0021 0027 0034 0030 .0026 0029 0033 0025
15 risk .1400 1505 .1429 1429 1452 .1450 1510 1334
) s.e. 0056 .0059 0065 0058 .0060 0065 0067 .0053

a=1, b=1, ¢=2, runct=200

o poly locreg smsp cv cvl cve gcv ARMC
05 risk .1913 .0363 0357 .0379 0362 0412 0357 0357
) s.e. .0012 .0009 0010 0016 .0009 0024 .0010 0010
1 risk 2322 1199 1121 1386 1256 1429 1124 1274
s.e. .0029 .0034 0035 0049 0041 0052 .0035 .0039
15 risk .2939 2314 2229 .2449 .2420 2412 2320 2313
) s.e. .0054 0061 0064 0063 0064 0059 .0066 .0059

The output in Table 3 below suggests that the effects of ¢, o0, and the c*¢ on the ratios
are not consistent for CV, CV1, CV2, and GCV. The result again supports our previous claim
that the estimators generated by model selection criteria are rather unstable.
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<Table 3> ANOVA output for ratios of the risks of CV, CV1, CV2, GCV to ARMC.
The values in the table are Pr>F.

Pr>F cv/ARMC cvl/ARMC cv2/ARMC gcv/ARMC
c 0.0539 <.0001 0.0491 <.0001
o 0.0301 0.0004 <.,0001 0.0024
C*0 0.0658 0.0007 0.0102 <.0001

From Table 3, we can see that for most of the cases, ¢, 0, and the c*o¢ have significant
impact on the ratios of the risks. When we look at the simulation results of the 36

combinations of various @, b, ¢ and o0, we can see that the data can be divided into two
groups. Group 1 is when c=1 with ¢=1, 1.5 and all the cases for ¢=0, ¢=0.1. Group 2 is when

c=1 with 0=05 and all the cases for ¢=2. The results are summarized in Table 4.

<Table 4> Ratios of the risks of CV, CV1, CV2, GCV to ARMC for Group 1 and Group 2.

CV/ARMC CVI/ARMC | CV2/ARMC | GCV/ARMC
mean 1.0786 1.1273 1.0874 1.1331
Group 1 S.€. 0.0050 0.0074 0.0068 0.0094
median 1.0723 11181 1.0862 1.1164
mean 1.0652 1.0140 1.1166 0.9538
Group 2 s.e. 0.0059 0.0083 0.0113 0.0154
median 1.0703 1.0162 1.1197 0.9704

The data in Table 4 suggest that for group 1, ARMC performs better than all the model
selection criteria; for group 2, GCV performs better than ARMC and CV1 generates similar
risks compared to ARMC.

Recall that when c¢#*0, the function has one hump, and the size of the hump increases
when the value of ¢ increases. When c=1 with 0¢=0.5, and c=2, we can clearly see there is a
hump. These cases belong to group 2. For the cases in group 1, the hump can not be seen
clearly due to the random error.

The data for group 2 indicate that local regression and smoothing spline generate similar
risks while polynomial regression performs much worse than the other two functions. Some
model selection criteria can reject polynomial regression without difficulty. Because model
combination can assign some weight to polynomial regression, thus the risks generated by
ARMC can be bigger than some model selection criteria.

The differences between the three regression procedures in group 1 are not as obvious as in
group 2. It will make model selection more difficult thus model combination ARMC shows
advantages.

When one regression procedure performs much worse than others, ARMC- can assign
nonzero weight to the bad procedure thus generates bigger risk. In that case, we can assign
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zero weight to the bad procedure and combine the rest procedures. We expect ARMC will
perform better than model selection criteria based on our experience with the data for group
1.

In summary, ARMC performs better than model selection criteria above the averagely.
ARMC has advantages especially when model selection is not very easy. When one regression
procedure performs much worse than others, ARMC can assign nonzero weight to the bad
procedure thus generates bigger risk. In that case, we can assign zero weight to the bad
procedure and combine the rest procedures. We expect ARMC will perform better than model
selection criteria based on our experience with the data for group 1.

4. Real data

In this section, we consider a real data set. The data set represents the ratios of weight to

height for boys from a study by Eppright, et al. (1972) and the scatter plot is shown in
Figure 2.

weight to height ratio vs. age
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<Figure 2> The scatter plot for the data in Eppright, et al. (1972).

For the real data, we cannot use new independent variables and the according true values
to assess the performance of regression procedures and ARM. Instead, we systematically split

the data into an estimation set Z (., (75%) and a test set Z(,, (25%) and the average
squared error in prediction was computed using the test data. There are four ways to split
the data: for run 1, Z ;0= (%441, YUH)",/i_l; for run 2, Z(pey= (X442, Y4,+2)"1/il; for
run 3, Z (= (%yrs, Yusa)"iis for run 4, Z(,m=(xy, Y,)"4,. The estimation set is

treated the same as Z" in section 3. The performance of CV, and ARMC are compared for
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the four runs and the results are shown in Table 5.

<Table 5> Comparing CV and ARMC for the real data set.

poly ~ locreg smsp Cv ARMC

1 001169 000793 .000895 000895 .000852

2 001195 000514 .000532 000514 000518

3 000785 000363 .000353 .000363 000358

4 001756 001170 001139 001170 001154
mean .001226 .000710 .000730 000736 000720
s.e. .000400 000355 000354 .000366 000355

From Table 5 we can see that CV and ARMC have very similar performance and the
pattern is similar to group 2 in Table 5. Since for this real data set, polynomial regression
has higher squared error in prediction than local regression and smoothing spline, we expect it
will give similar pattern compared with group 2 in Table 5. The real data set supports our
findings using simulation data.

5. Conclusion

The main topic of this study is to compare the performance of model combination method
ARMC and model selection criteria CV, CV1, CV2, and GCV. One-dimensional regression with
fixed design is considered and the regression procedures are polynomial regression, local
regression, and smoothing spline. Systematic half-half splitting is used such that the data are

split into two parts: Z‘© and Z®. The first part is used for estimation and the second part
is used for prediction.

The results suggest that in average ARMC generates smaller risks compared with model
selection criteria CV, CV1, CV2, and GCV. The result suggests that above the averagely,
ARMC is indeed a better choice compared with model selection criteria.

When models are close in terms of a selection criterion, ARMC can be much better than
model selections. However, when one regression procedure performs much worse than others,
ARMC can generate bigger risk due to nonzero weight of the worst procedure. In order to
improve the performance of ARMC, we can assign zero weight to the bad procedure and
combine the rest procedures.

Systematic splitting is preferred in our study due to less time-consuming. If x is
multi-dimensional, we expect random splitting with permutation will perform better since
systematic splitting will be difficult even infeasible.

In summary, ARMC generates smaller or similar risk compared with model selection criteria
and the risk is close to the risk of the best regression procedure. The result suggests that
ARMC is indeed a good choice for model combination.
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