• Title/Summary/Keyword: Active source

Search Result 1,451, Processing Time 0.022 seconds

The Role of Plant Fatty Acids in Regulation of the Adaptation of Organisms to the Cold Climate in Cryolithic Zone of Yakutia (야쿠티아의 동토지역에 서식하는 생물의 추운기후-순화의 조절에서 식물 지방산의 역할)

  • Petrov, Klim Alekseevich;Dudareva, Lyubov Vissarionovna;Nokhsorov, Vasilii Vasilevich;Perk, Aleksandr Aleksandrovich;Chepalov, Valentin Azotovich;Sophronova, Valentina Egorovna;Voinikov, Victor Kirillovich;Zulfugarov, Ismayil S.;Lee, Choon-Hwan
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.519-530
    • /
    • 2016
  • Vegetative plants in Yakutia are naturally frozen when they are covered with snow in the fall, and they function as green cryo-fodder that is a source of biologically active substances and nutrients for herbivorous animals. We observed a considerable increase in the total fatty acid content in the leaves of Avena sativa, Elytrigia rеpens, Equisetum variegatum and Equisetum scirpoides during the fall period. However, the degree of unsaturation of fatty acids was not higher in the frozen plants covered with snow than in the summer plants, with the exception of E. scirpoides, a dwarf horsetail found in the Pole of Cold in the northern hemisphere. In the internal adipose tissue of the Yakut horse (young horse meat), 18 fatty acids were found, including 10 saturated ones. Monounsaturated oleic С18:1 (n-9) acid and polyunsaturated α-linolenic С18:3 (n-3) acid were equally prevalent among the unsaturated fatty acids, accounting for 70% of the total unsaturated fatty acids. This composition of polyenoic fatty acids in the internal adipose tissue indicates that the Yakut horse actively feeds on the fall vegetation and the wintergreen sedge-grass. We believe that the high plant-specific free fatty acid content in the tissue of Yakut horses may play an important role in the regulation of their resistance to long-term low-temperature stress.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Inhibition of Adipocyte Differentiation and Adipogenesis by Aged Black Garlic Extracts in 3T3-L1 Preadipocytes (흑마늘 추출물에 의한 3T3-L1 지방전구세포의 분화 및 adipogenesis 억제에 관한 연구)

  • Park, Jung-Ae;Park, Cheol;Han, Min-Ho;Kim, Byung-Woo;Chung, Yoon-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.720-728
    • /
    • 2011
  • Garlic (Allium sativum) has been used as a source food as well as a traditional folk medicine ingredient since ancient times. Aged black garlic is a type of fermented garlic and is expected to have stronger anticancer and antioxidant activities than raw garlic. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis are poorly understood. In the present study, the effects and mechanisms of water extracts of raw garlic (WERG) and aged black garlic (WEABG) on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. Treatment with WEABG significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining, however WERG had no such effect. In addition, WEABG reduced accumulation of cellular triglyceride, which is associated with a significant inhibition of key pro-adipogenic transcription factors including peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ (C/EBP${\alpha}$) and C/EBP${\beta}$. Taken together, these results provide important new insight that aged black garlic might inhibit adipogenesis by suppressing the pro-adipogenic transcription factors in 3T3-L1 preadipocytes, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of aged black garlic.

EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골활성 및 골기질 형성의 평가)

  • Park, Bong-Wook;Byun, June-Ho;Lee, Sung-Gyoon;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.511-519
    • /
    • 2006
  • Autogenous bone grafts have been considered the gold standard for maxillofacial bony defects. However, this procedure could entail a complicated surgical procedure as well as potential donor site morbidity. Possibly the best solution for bone-defect regeneration is a tissue engineering approach, i.e. the use of a combination of a suitable scaffold with osteogenic cells. A major source of osteogenic cells is the bone marrow. Bone marrow-derived mesenchymal stem cells are multipotent and have the ability to differentiate into osteoblastic, chondrocytic, and adipocytic lineage cells. However, the isolation of cells from bone marrow has someproblems when used in clinical setting. Bone marrow aspiration is sometimes potentially more invasive and painful procedure and carries of a risk of morbidity and infection. A minimally invasive, easily accessible alternative would be cells derived from periosteum. The periosteum also contains multipotent cells that have the potential to differentiate into osteoblasts and chondrocytes. In the present study, we evaluated the osteogenic activity and mineralization of cultured human periosteal-derived cells. Periosteal explants were harvested from mandibule during surgical extraction of lower impacted third molar. The periosteal cells were cultured in the osteogenic inductive medium consisting of DMEM supplemented with 10% fetal calf serum, 50g/ml L-ascorbic acid 2-phosphate, 10 nmol dexamethasone and 10 mM -glycerophosphate for 42 days. Periosteal-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 14 of culture period, then decreased in intensity during the culture period. ALP mRNA expression increased up to day 14 with a decrease thereafter. Osteocalcin mRNA expression appeared at day 7 in culture, after that its expression continuously increased in a time-dependent manner up to the entire duration of culture. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. In conclusion, our study showed that cultured human periosteal-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix. As the periosteal-derived cells, easily harvested from intraoral procedure such as surgical extraction of impacted third molar, has the excellent potential of osteogenic capacity, tissue-engineered bone using periosteal-derived cells could be the best choice in reconstruction of maxillofacial bony defects.

Development of Eimeriu tenezla in MDEK cell culture with a note on enhancing effeet of preincubation with chicken spleen cells (MDBK 세포 배양에서 Eimeria tenella 발육 상황 및 닭 비장세포에 의한 발육 항진 효과)

  • 채종일;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.27 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that 2. tenezla first penetrate into the mucosal intraepithelial Iymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope labelled uracil ($^3H-uracil$) . Third, the E. tenella sporozoites viability was assayed after preincubation of them with thicken spleen cells. E. tenella oocysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (I) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schisogonic cycle of E. tenella in 3~4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merogoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48~60 hours, and decreased thereafter. The uptake amount of $^3H-uracil$ depended not only upon the inoculum sixte of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of sporozoites with spleen cells for 4 or 12 hours, the 3H-uracil uptake was significantly increased compared with that of control group. From the results, it was inferred that, although the penetration of E. tenella sporozoites into the lymphoid cells such as IEL is not an essential step, it should be at least a beneficial one for the survival and development of sporozoites in the chicken intestine.

  • PDF

Monitoring of Feed-Nutritional Components, Toxic Heavy Metals and Pesticide Residues in Mushroom Substrates According to Bottle Type and Vinyl Bag Type Cultivation (버섯의 봉지재배 및 병재배 시 재배단계별 배지의 사료영양적 성분, 독성중금속 및 잔류농약 모니터링)

  • Kim, Y.I.;Bae, J.S.;Huh, J.W.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.

Effect of Cosmetics Contained Isotonic Water Mimicked Body Fluid on Cell Activities and Skin (생체 모사수 화장품이 세포 활성과 피부에 미치는 효과)

  • Park, Sun Young;Lee, Sung Hoon;Kim, Eun Joo;Choi, So Woong;Kim, Ji Young;Cho, Seong A;Cho, Jun Cheol;Lee, Hae Kwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.195-201
    • /
    • 2014
  • Body fluid has been studied for diverse fields like Ringer's solutions, artificial joint fluids, cell growth culture media because it plays a crucial role in controlling body temperature and acts as a solvent for diverse metabolite processes in the body and delivery media of mineral, energy source, hormone, signal and drug from and to cell via blood or lymphatic vessel by osmotic pressure or active uptake. Stratum corneum containing extracellular lipids and NMF (natural moisturizing factor) absorbs atmospheric water residing outside of cells and utilize it to hydrate inside of their own. This process is related to skin barrier function. In this study, we conducted the cell viability test with Cell Bio Fluid $Sync^{TM}$, which mimicks body fluids including amino acids, peptides, and monosaccharides to strengthen skin barrier, and the clinical skin improvement test with cosmetics containing Cell Bio Fluid $Sync^{TM}$. In the cell viability test, HaCaT cell was treated with PBS for 3 hours, followed by the treatment of a cell culture medium (DMEM) and isotonic solution (PBS) and Cell Bio Fluid $Sync^{TM}$ for 3 hours each. Then, MTT assay and image analysis were conducted. In the clinical skin improvement test, twenty-one healthy women participated. Participants applied cosmetics containing Cell Bio Fluid $Sync^{TM}$ on their face for a week and evaluated the skin hydration, skin roughness, brightness and evenness. All measurements were conducted after they washed off their face and took a rest under the constant temperature ($22{\pm}2^{\circ}C$) and constant humidity conditions ($50{\pm}5%$) for 20 minutes. All the data were analyzed by SPSS (version 21) software program. Results showed that Cell Bio Fluid $Sync^{TM}$ improved both the cell viability and in vivo skin conditions such as skin hydration, roughness, brightness and evenness.

Experimental Fetal Cardiopulmonary Bypass in the Fetal Lamb Model (태아양 모델을 이용한 실험적 태아 심폐우회술)

  • 이정렬;임홍국;김원곤;김종성;최정연;김용진
    • Journal of Chest Surgery
    • /
    • v.32 no.6
    • /
    • pp.495-503
    • /
    • 1999
  • Background: We tested the technical feasibility of fetal cardiac bypass and collected baseline data on the fetal hemodynamics and placental functions related to the cardiopulmonary bypass in the fetal lamb model. Material and Method: Eleven fetuses at 120 to 150 days of gestation were subjected to bypass via trans-sternal approach with a 12 G pulmonary arterial cannula and 14 to 18 F venous cannula for 30 minutes. All ewes received general anesthesia with ketamine. In all the fetuses, no anesthetic agents were used except muscle relaxant. Eight served as a group in which placenta was excluded from the extracorporeal circulation by clamping the umbilical cord during the bypass(the oxygenator group) and in the remaining three, the placenta worked as the only source of oxygen supply(the placenta group). Observations were made every 10 minute during a 30-minute bypass and 30-minute post bypass period. No prostaglandin inhibitors were used both in ewes and in fetuses. Result: Weights of the fetuses ranged from 1.9 to 5.2 kg. In the oxygenator group, means of arterial pressure, PaO2, atrial pressure, heart rate, and bypass flow rate ranged 69.8 to 82.6 mmHg, 201.7 to 220.9 mmHg, 4.1 to 4.3 mmHg, 169 to 182/min, and 140.3 to 164.0 ml/kg/min, respectively during bypass, but rapid deterioration of the fetal cardiac functions and the placental gas exchange was observed after the cessation of bypass. In the placenta group, means of arterial pressure decreased from 44.7 to 14.4 mmHg and means of PaCO2 increased from 61.9 to 129.6 mmHg during bypass. Flow rate was suboptimal(74.3 to 97.0 ml/kg/min) during bypass. All hearts fibrillated immediately after the discontinuation of bypass. Conclusion: In this study, the technical feasibility of fetal cardiopulmonary bypass was confirmed in the fetal lamb model. However, further studies with modifications of the bypass including an addition of prostaglandin inhibitor, an application of the total spinal anesthesia on the fetus, a creation of more concise bypass circuit, and a use of active pump are mandatory to improve the outcome.

  • PDF

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers (화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향)

  • Lee, Min-Kyoung;Lee, Gil-Seung;Yim, Woo-Jong;Hong, In-Soo;Palaniappan, Pitchai;Siddikee, Md. Ashaduzzaman;Boruah, Hari P. Deka;Madhaiyan, Munusamy;Ahn, Ki-Sup;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2009
  • Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.