DOI QR코드

DOI QR Code

Monitoring of Feed-Nutritional Components, Toxic Heavy Metals and Pesticide Residues in Mushroom Substrates According to Bottle Type and Vinyl Bag Type Cultivation

버섯의 봉지재배 및 병재배 시 재배단계별 배지의 사료영양적 성분, 독성중금속 및 잔류농약 모니터링

  • Kim, Y.I. (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Bae, J.S. (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University) ;
  • Huh, J.W. (Kyonggi-do Institute of Health & Environment) ;
  • Kwak, W.S. (Animal Science, School of Life Resource and Environmental Sciences, College of Natural Sciences, Konkuk University)
  • 김영일 (건국대학교 자연과학대학 생명자원환경과학부 축산학전공) ;
  • 배지선 (건국대학교 자연과학대학 생명자원환경과학부 축산학전공) ;
  • 허정원 (경기도 보건환경연구원) ;
  • 곽완섭 (건국대학교 자연과학대학 생명자원환경과학부 축산학전공)
  • Published : 2007.02.28

Abstract

This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.

본 연구에서는 새송이버섯 병재배방식과 느타리버섯 봉지재배방식의 재배단계별(최초 배지 단계, 균사체 배양 후 배지 단계, 자실체 수확 후 폐배지 단계)로 배지의 화학 성분의 흐름을 추적 구명하고, 독성 중금속(Cd, Pb, As)과 잔류 농약으로부터의 안전성을 평가하였다. 양 재배방식 공히 최초 배지와 비교해서 자실체 수확 후의 영양소의 양적 감소 정도에 있어서 총무게는 평균 29%, 건물과 유기물은 공히 21~25%, 섬유소는 19~22% 감소하였다. 재배단계에서 분해 이용된 유기물 량의 2/3~3/4은 섬유소(NDF)였으며, 이용된 섬유소의 주된 성분(50~70%)은 hemicellulose이었다. 균사체 성장이 배지의 화학적 성분에 미치는 효과는 새송이버섯의 병재배 시에는 미미하였으나(P>0.05), 느타리버섯의 봉지재배 시에는 ADF 성분을 제외한 거의 모든 유기물과 무기물이 분해 소실되는 것으로 나타났다(P<0.05). 자실체는 봉지재배 시보다는 병재배 시에 배지내의 영양소를 매우 활발하게 흡수하였다(P<0.05). 수확한 자실체는 폐배지보다 조단백질, 비섬유성탄수화물, 조회분 성분이 훨씬 높고(P<0.05), NDF 성분은 훨씬 낮아서(P<0.05), 폐배지의 화학적 조성에 바람직하지 못한 영향을 미치는 것으로 나타났다. 폐배지는 독성 중금속과 잔류농약의 오염이 거의 없어 위생적으로 안전하였다. 결론적으로 최초 배지와 비교해서 폐배지는 난분해성 섬유소 성분이 증가하고, 조단백질 중 순수단백질이 줄고, 비소화성단백질이 느는 등 질적으로 떨어져서 사료영양적 가치는 상대적으로 하락하는 것으로 나타났다.

Keywords

References

  1. Adamovic, M., Grubi, G., Milenkovic, I., Jovanovi, R., Proti, R., Sretenovi, L. and Stoievi, L. 1998. The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Animal Feed Science Technology 71:357-362 https://doi.org/10.1016/S0377-8401(97)00150-8
  2. Andrew, S. B. and Anita, M. J. 1995. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresoruce Tech. 54:311-314 https://doi.org/10.1016/0960-8524(95)00153-0
  3. Bakshi, M. P. S., Gupta, V. K. and Langar, P. N. 1985. Acceptability and nutritive evaluation of Pleurotus harvested spent wheat straw in buffaloes. Agricultural Wastes 13:51-58 https://doi.org/10.1016/0141-4607(85)90011-3
  4. Baskaran, S., Bolan, N. S., Rahmanm, A and Tillman, R. W. 1996. Effect of exogenous carbon on the sorption and movement of atrazine and 2,4-D by soils. Australian Journal of Soil Research 34(4):609-622 https://doi.org/10.1071/SR9960609
  5. Calzada, J. F., Franco, L. F., Arriola, M. C., Rolz, C. and Ortiz, M. A. 1987. Acceptability, body weight changes and digestibility of spent wheat straw after harvesting of Pleurotus sajor-caju. Biological Wastes 22:303-309 https://doi.org/10.1016/0269-7483(87)90117-0
  6. CODEX. 2006. Draft And proposed draft maximum residue limites in foods and feeds at seep 7 and 4, including dried chili peppers at step 7
  7. Ehlers, G. A. and Rose, P. D. Immobilized white- rot fungla biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation. 2004, Bioresource Tech 96:1264-1275 https://doi.org/10.1016/j.biortech.2004.10.015
  8. Fermor, T., Watts, N., Duncombe, T., Brooks, R., McCarthy, A., Semple, K. and Reid, B. 2000. Bioremediation: use of composts and composting echnologies. Mushroom Science 15:833-839
  9. Hadar, Y., Zohar, K. and Barbara, G. 1993. Biodegradation of lignocellulosic agrocultural wastes by Pleurotus ostreatus. Journal of Biotechnology 30:133-139 https://doi.org/10.1016/0168-1656(93)90034-K
  10. Kannan, K. and Oblisami, G. 1990. Enzymology of ligno-cellulose degradation by pleurotus sajor-caju during geowth on paper-mill sludge. Biological wastes 33:1-8 https://doi.org/10.1016/0269-7483(90)90116-A
  11. Kuo, W. S. and Regan, R. W. 1998. Aerobic carbamate bioremediation aided by compost residuals from the mushroom industry: Laboratory Studies. Compost Science and Utilization 6(1):19-29 https://doi.org/10.1080/1065657X.1998.10701905
  12. Makela, M., Galkin, S., Hatakka, A. and Lundell, T. 2002. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology 30:542-549 https://doi.org/10.1016/S0141-0229(02)00012-1
  13. Manuel, V., Gonzalo, A. and Angel, T. M. 1990. Substrate-dependent degradation patterns in the decay of wheat straw and veech wood by ligninolytic fungi. Appl Microbiol Biotechnol 33:481-484
  14. Mark, W. P., Hadar, Y. and Dan, C. 1984. Fungal activities involved in lignocellulose degradation by pleurotus. Appl Microbial Biotechnol 20:150-154
  15. Martirani, L., Giardina, P., Marzullo, L. and Sannia, G. 1996. Reduction of phenol content and toxicity in olive oil mill waste waters with the ligniolytic fungus Pleurotus ostreatus. Water Research 30(8): 1914-1918 https://doi.org/10.1016/0043-1354(95)00330-4
  16. Mashphy, S., Levanon, D. and Henis, Y. 1996. Degradation of atrazine by the lignocellulolytic fungus pleurotus pulmonarius during solid-state fermentation. Bioresource Tech 56:207-214 https://doi.org/10.1016/0960-8524(96)00026-0
  17. National Research Council. 1980. Mineral Tolerance of Domestic Animals. National Academy Press, Washington, DC, USA
  18. Rajathan, S. and Bano, Z., 1989. Pleurotus mushrooms. Biotransformations of natural lignocellulotic waste. Critical Rev. Food Sci. Nutr., Vol. 28. Mysore, India, pp. 31-123 https://doi.org/10.1080/10408398909527491
  19. Semple, K. T., Watts, N. U. and Fermor, T. R. 1998. Factors affecting the mineralization of (U14C) benzene in spent mushroom substrate. FEMS Microbiology Letters 164(2):317-321 https://doi.org/10.1111/j.1574-6968.1998.tb13104.x
  20. Semple, K. T. and Fermor, T. R. 1995. The bioremediation of enobiotic-contamination by composts and associated microflora. Mushroom Science 14(2): 917-924
  21. Staments, P. 2001. Mycova : Helping the ecosystem through mushroom cultivation. http://www.fungi.com/ bioremediation/index.html (June 29, 2001)
  22. Tuomela, M., Vikman, M., Hatakka, A. and Itavaara, M. 2000. Biodegradation of lignin in a compost enviroment:a review. Bioresource Tech 72:169-183 https://doi.org/10.1016/S0960-8524(99)00104-2
  23. 김영일, 배지선, 정세형, 안문환, 곽완섭. 2007. 버섯폐배지의 발생량 조사 및 새송이, 느타리, 팽이 버섯 폐배지의 버섯종류별과 재배방식별의 물리화학적 특성 평가. 한국동물자원과학회지 49(1):913-922 https://doi.org/10.5187/JAST.2007.49.1.067
  24. 김용국, 김용인. 1993. Mycelium에 의한 Lignocellulose 물질로부터 양질의 발효사료 생산. 한국낙농학회지. 15(4):251-260
  25. 농림부. 2001. 사료 내 위해물질과 잔류농약 범위 및 허용치. 농림부 고시 2001-61, 농림부, 대한민국
  26. 배지선. 2006. 버섯 폐배지의 반추동물 조사료원으로서의 사료 영양적 가치에 대한 기초 평가. 건국대학교 석사학위 논문
  27. 식약청. 2001. 식품공전(별책). 132-133, 258-263
  28. 윤승락. 1996. 표고버섯 재배 톱밥 폐배지의 가축 조사료 이용. 월간 축산인. 2월호 :124
  29. 홍무기, 원경풍, 황인균, 최동미, 이강봉, 오금순, 허수정. 2002. 식품중 잔류농약 모니터링. 식품의약품안전청연구보고서 제6권 The Annual Report of KFDA, Vol(6):67-75

Cited by

  1. Determination of Mineral Components in the Cultivation Substrates of Edible Mushrooms and Their Uptake into Fruiting Bodies vol.37, pp.2, 2009, https://doi.org/10.4489/MYCO.2009.37.2.109
  2. Effect of the Dietary Supplementation of Fermented Spent Mushroom (Pleurotus eryngii) Substrates on the Growth Performance and Carcass Characteristics in Hanwoo Steers vol.21, pp.12, 2011, https://doi.org/10.5352/JLS.2011.21.12.1705
  3. Monitoring and Risk Assessment of Heavy Metals in Edible Mushrooms vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.37