• Title/Summary/Keyword: Active power loss

Search Result 270, Processing Time 0.036 seconds

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

Output inductor-less active clamp forward converter employing current boost-up circuit for high power density adaptor

  • Lee, Keun-Wook;Choi, Seong-Wook;Lee, Byoung-Hee;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.403-405
    • /
    • 2008
  • This paper proposes an output inductor-less active clamp forward converter employing current boost-up circuit for high power density adaptor. By applying the proposed current boost-up circuit, the proposed converter has low conduction loss and low voltage ringing of the secondary rectifier. This paper presents the analysis of the proposed converter and a comparison between the proposed converter and the conventional converter through experiment.

  • PDF

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other This may result in wiring failure of the neutral conductor and overloading of the distribution transformer In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system This remedies overloading and power loss of the system The experimental results on a prototype validate the proposed control approach.

A new high efficiency active clamp forward converter suitable for the sustaining power module of a plasma display panel (PDP 유지 전원단에 적합한 새로운 고효율 능동형 클램프 포워드 컨버터)

  • Kim, Tae-Sung;Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.433-435
    • /
    • 2005
  • A new high efficiency active clamp forward converter suitable for the sustaining power module(SPM) of a plasma display panel (PDP) is proposed. It has a wide zero voltage switching (ZVS) range without inserting additional resonant inductor. Also, it features simpler structure, lower cost, less mass, and no effective duty loss. Furthermore, voltages across all rectifier diodes are clamped on the output voltage, which results in a higher efficiency.

  • PDF

A Research on Characteristics of Semi-active Muffler Using Difference of Transmission Paths (전달경로의 차이를 이용한 차량용반능동형 머플러의 특성에 관한 연구)

  • 이종민;김경목;손동구;이장현;황요하
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.401-409
    • /
    • 2001
  • Passive type mufflers installed on every car haute inherent problem of lowering engine power and fuel efficiency caused by backpressure which is byproduct of complex internal structure. Recent improvements like installing a calve to change exhaust gas path depending on power requirement and rpm have only marginally improved performance. Tremendous amount of recent research works on active exhaust noise control have failed to commercialize because of numerous physical and economical reasons. In this paper, a unique seal-active muffler using difference of transmission paths is presented. In this system exhaust pipe is divided into two and joined again downstream. Exhaust noise is reduced by destructive interference when two-divided noise join again with transmission paths'difference which is half of the wavelength of a main noise frequency. One divided path has a sliding mechanism to change length thereby transmission path length difference is adjusted to entwine rpm change. The proposed system has minimal backpressure and does not need a secondary sound source like a speaker so it can overcome many problems of failed active noise control methods. We have verified proposed system's superior performance by simulation and comparison experiment with passive mufflers.

  • PDF

Development of Active Tracking System for Efficiency Improvement of PV Generation (태양광 발전의 효율 개선을 위한 능동형 추적시스템 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1122-1123
    • /
    • 2008
  • This paper proposes a the high efficiency tracking system regarding power loss when operating a tracking system for environment variable such as a rapidly changing insolation and shadow effect to improve the power of PV tracking system. To reduce the power loss, this paper proposes a novel control algorithm of the tracking system. And paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method.

  • PDF

ESTABLISHMENT OF A SEVERE ACCIDENT MITIGATION STRATEGY FOR AN SBO AT WOLSONG UNIT 1 NUCLEAR POWER PLANT

  • Kim, Sungmin;Kim, Dongha
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • During a station blackout (SBO), the initiating event is a loss of Class IV and Class III power, causing the loss of the pumps, used in systems such as the primary heat transporting system (PHTS), moderator cooling, shield cooling, steam generator feed water, and re-circulating cooling water. The reference case of the SBO case does not credit any of these active heat sinks, but only relies on the passive heat sinks, particularly the initial water inventories of the PHTS, moderator, steam generator secondary side, end shields, and reactor vault. The reference analysis is followed by a series of sensitivity cases assuming certain system availabilities, in order to assess their mitigating effects. This paper also establishes the strategies to mitigate SBO accidents. Current studies and strategies use the computer code of the Integrated Severe Accident Analysis Code (ISAAC) for Wolsong plants. The analysis results demonstrate that appropriate strategies to mitigate SBO accidents are established and, in addition, the symptoms of the SBO processes are understood.

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.