• Title/Summary/Keyword: Active Metal

Search Result 868, Processing Time 0.029 seconds

A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type

  • Lee, Souk Min;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Objective: This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods: Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a $-7^{\circ}$ torque. The orthodontic wires used included 0.018 round and $0.019{\times}0.025$ in rectangular stainless steel wires. The FR was measured at $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results: The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the $0^{\circ}$ angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions: The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

Comparison of efficiencies of converting urea solution to ammonia depending on active catalyst metals on TiO2 (타이타니아 담지 활성촉매에 따른 요소 수용액의 암모니아 전환 효율 비교)

  • Lee, Myung Sig;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.163-172
    • /
    • 2018
  • In this study, selective catalytic reductions (SCR) of NO commercial catalysts were used to investigate the effect of ammonia gasification from urea solution. The effects of catalytic chemical composition on the reaction temperature and space velocity were studied. $V_2O_5/TiO_2$ catalysts, which are widely used as SCR catalysts for removal of nitrogen oxides, have better ammonia formation compare to $TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The $TiO_2$ catalyst not supporting the active metal was not affected by the space velocity as compared with the catalyst supporting $V_2O_5$ or $WO_3-V_2O_5$. The active metal supported catalysts decreased in the ammonia formation as the space velocity increased.

Characteristics of a PMOSFET Photodetector for Highly-Sensitive Active Pixel Sensor (고감도 능동픽셀센서를 위한 PMOSFET 광검출기의 특성)

  • Seo, Sang-Ho;Park, Jae-Hyoun;Lee, June-Kyoo;Wang, In-Soo;Shin, Jang-Kyoo;Jo, Young-Chang;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.149-155
    • /
    • 2003
  • A PMOSFET photodetector for highly-sensitive active pixel sensor(APS) is presented. This sensor uses 5V power supply and has been designed and fabricated using I-poly and 2-metal $1.5{\mu}m$ CMOS technology. The feature of a PMOSFET photodetector is that the polysilicon gate of the PMOSFET was connected to n-well, in order to increase the photo sensitivity. The designed MOS photodetector has similar $I_{DS}-V_{DS}$ characteristics with a standard MOSFET. One dimensional image sensor with 16 pixels based on the PMOSFET photodetector has also been designed and fabricated. Unit pixel of the designed sensor consists of a PMOSFET photodetector and 4 NMOSFETs. Unit pixel area is $86{\mu}m{\times}90.5{\mu}m$ and its fill factor is about 12%.

Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature (Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구)

  • Kim, Sung Chul;Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.657-662
    • /
    • 2018
  • In this study, the effect of $Pt/TiO_2$ catalysts on the CO oxidation reaction at room temperature was investigated using various $TiO_2$ supports with different physical properties to compare and evaluate $Pt/TiO_2$ catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the $O_2$-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.

Problems of Legal Permissible Limit in Metal Level of Herbal Drugs Using Current Korea (현행 한국의 한약재 중금속기준개정 필요성 고찰)

  • Lee Sun-Dong;Park Kyung-Sik
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2001
  • Legal permissible limit of herbal drugs metal level in Korea is define 'less 30.0ppm in total(except mineral drugs)' including Pb Hg Cd As Cr Ni etc. This limit has a lot of problems in several factors, that is, not divide hazard and essential elements, not consider high and low toxic effect in each metal, not calculate dose-response relationship and average health behavior in Korean etc. As a that result, It has strong limits and weakness in the basic toxicology and Oriental medicine. To improve and correct these factors, We need to several new approach as like below. It must be radical study following problems in short and middle-long period in the future, toxic metal and essential element must be divide to basic toxicology and also be diverse toxic effect. But mineral drugs that included a amount of severe toxic metals is being used as active prescription drug until now. If toxic, safety and side-effect of metals will be considered, mineral drugs must prohibit instantly or use at least after examined toxic effect. But one of the most important things about herbal drugs contamination, all people and department (government, farmer and trader, oriental medicine doctors and association) will be participate cooperative and collection for preventive or the least contamination in herbal drugs.

  • PDF

Reliability of metal films on flexible polymer substrate during cyclic bending deformations

  • Kim, Byeong-Jun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.244.1-244.1
    • /
    • 2016
  • Recently, the technology for flexible electronics such as flexible smart phone, foldable displays, and bendable battery is under active development. With approaching the real commercialization of flexible electronics, the electrical and mechanical reliability of flexible electronics have become significantly important because they will be used under various mechanical deformations such as bending, twisting, stretching, and so on. These mechanical deformations result in performance degradation of electronic devices due to several mechanical problems such as cracking, delamination, and fatigue. Therefore, the understanding of relationship between mechanical loading and electrical performance is one of the most critical issues in flexible electronics for expecting the lifetime of products. Here, we have investigated the effect of monotonic tensile and cyclic deformations on metal interconnect to provide a guideline for improving the reliability of flexible interconnect.

  • PDF

Analysis of belt behavior for a metal V-belt CVT (금속 V-벨트 CVT의 벨트거동 해석)

  • 김현수;이재신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.557-566
    • /
    • 1991
  • The metal V-belt behavior of a continuously variable transmission was investigated analytically and experimentally. Numerical results showed that nondimensional belt radial displacement increased in the radial inward direction for the driven pulley, while that of the driver pulley increased for the first 90 degrees of the active are and decreased with the increasing torque load. Experimental results for the belt radial displacement were in good agreement with the theoretical results. However, the absolute magnitude of the belt radial displacement was so small that the change in the belt displacement could not be measured in the experimental range except for the inlet region of the driven pulley, where the radial inward displacement was observed due to the effect of bending moment. The speed ratio-axial force relationship derived from the belt behavior analysis also showed god agreement with the experiment.

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF