Browse > Article
http://dx.doi.org/10.14478/ace.2018.1057

Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature  

Kim, Sung Chul (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
Kim, Geo Jong (Department of Environmental Energy Engineering, Kyonggi University)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 657-662 More about this Journal
Abstract
In this study, the effect of $Pt/TiO_2$ catalysts on the CO oxidation reaction at room temperature was investigated using various $TiO_2$ supports with different physical properties to compare and evaluate $Pt/TiO_2$ catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the $O_2$-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.
Keywords
CO; $TiO_2$; Catalyst; Pt; Oxdiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N, Yamaguchi, N. Kamiuchi, H. Muroyama, T. Matsui, and K. Eguchi, Effect of reduction treatment on CO oxidation over Pt/$SnO_2$ catalyst, Catal. Today, 164, 169-175 (2011).   DOI
2 P. W. Seo, The Mechanism and characteristics of formaldehyde oxidation reaction over Pt/$TiO_2$ catalysts at room temperature, PhD Dissertation, Korea University, Korea (2010).
3 M. Haruta, N. Yamada, T. Kobayashi, and S. lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989).   DOI
4 C. K. Costello, M. C. Kung, H.-S. Oh, Y. Wang, and H. W. Kung, Nature of the active site for CO oxidation on highly active $Au/{\gamma}-Al_2O_3$, Appl. Catal. A, 232, 159-168 (2002).   DOI
5 S. M. Oxford, J. D. Henao, J. H. Yang, M. C. Kung, and H. H. Kung, Understanding the effect of halide poisoning in CO oxidation over Au/$TiO_2$, Appl. Catal. A, 339, 180-186 (2008).   DOI
6 C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J.-N. Lin, L. D. Marks, M. C. Kung, and H. H. Kung, On the potential role of hydroxyl groups in CO oxidation over Au/$Al_2O_3$, Appl. Catal. A, 243, 15-24 (2003).   DOI
7 H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, and M. C. Kung, Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts, J. Catal., 210, 375-386 (2002).   DOI
8 C. K. Costello, J. Guzman, J. H. Yang, Y. M. Wang, M. C. Kung, B. C. Gates, and H. H. Kung, Activation of Au/c-$Al_2O_3$ catalysts for CO oxidation: Characterization by X-ray absorption near edge structure and temperature programmed reduction, J. Phys. Chem. B, 108, 12529-12536 (2004).   DOI
9 J. H. Yang, J. D. Henao, M. C. Raphulu, Y. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, and H. H. Kung, Activation of Au/$TiO_2$ catalyst for CO oxidation, J. Phys. Chem. B, 109, 10319-10326 (2005).   DOI
10 J. D. Henao, T. Caputo, J. H. Yang, M. C. Kung, and H. H. Kung, In situ Transient FTIR and XANES studies of the evolution of surface species in CO oxidation on Au/$TiO_2$, J. Phys. Chem. B, 110, 8689-8700 (2006).   DOI
11 B. A. De Angelis, Metal-support and metal-additive effects in catalysis, J. Mol. Catal., 19, 289 (1983).   DOI
12 Y. Shen, G. Lu, Y. Guo, Y. Wang, Y. Guo, and X. Gong, Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd-Cu-Clx/$Al_2O_3$ catalyst, Catal. Today, 175, 558-567 (2011).   DOI
13 S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang, and W. Zhang, Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method, Catal. Commun., 9, 1045-1049 (2008).   DOI
14 G. J. Kim, D. W. Kwon, and S. C. Hong, Effect of Pt particle size and valence state on the performance of Pt/$TiO_2$ catlaysts for CO oxidation at room temeprature, J. Phys. Chem. C, 120, 17996-18004 (2016).   DOI
15 S. P. Cho, A study on the SCR reaction at low temperature and the characteristics of V/titania NOx removal catalyst, PhD Dissertation, Korea University, Korea (2010).
16 S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/$TiO_2$ catalyst, Appl. Catal. A, 398, 96-103 (2011).   DOI
17 N. Kamiuchi, M. Haneda, and M. Ozawa, CO oxidation over Pt/Ce-Zr oxide catalysts with low content of platinum and cerium components, Catal. Today, 201, 79-84 (2013).   DOI
18 A. Boubnov, S. Dahl, E. Johnson, A. P. Molina, S. V. Simonsen, F. M. Cano, S. Helveg, L. J. Lemus-Yegres, and J. Grunwaldt, Structure-activity relationships of Pt/$Al_2O_3$ catalysts for CO and NO oxidation at diesel exhaust conditions, Appl. Catal. B, 126, 315-325 (2012).   DOI