• Title/Summary/Keyword: Activation energy for thermal decomposition

Search Result 82, Processing Time 0.023 seconds

Characterization of Poly(methyl methacrylate)-tin (IV) Chloride Blend by TG-DTG-DTA, IR and Pyrolysis-GC-MS Techniques

  • Arshad, Muhammad;Masud, Khalid;Arif, Muhammad;Rehman, Saeed-Ur;Saeed, Aamer;Zaidi, Jamshed Hussain
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3295-3305
    • /
    • 2011
  • Thermal behavior of poly (methyl methacrylate) was analyzed in the presence of tin (IV) chloride. Five different proportions - polymer to additive - were selected for casting films from common solvent. TG, DTG and DTA were employed to monitor thermal degradation of the systems. IR and py-GC-MS helped identify the decomposition products. The blends start degrading at a temperature lower than that of the neat polymer and higher than that of the pure additive. Complex formation between tin of additive and carbonyl oxygen (pendent groups of MMA units) was noticed in the films soon after the mixing of the components in the blends. The samples were also heated at three different temperatures to determine the composition of residues left after the expulsion of volatiles. The polymer, blends and additive exhibited a one step, two-step and three-step degradation, respectively. $T_0$ is highest for the polymer, lowest for the additive and is either $60^{\circ}C$ or $70^{\circ}C$ for the blends. The amount of residue increases down the series [moving from blend-1 (minimum additive concentration) to blend-5 (maximum additive concentration)]. For blend-1, it is 7% of the original mass whereas it is 16% for blend-5. $T_{max}$ also goes up as the concentration of additive in the blends is elevated. The complexation appears to be the cause of observed stabilization. Some new products of degradation were noted apart from those reported earlier. These included methanol, isobutyric acid, acid chloride, etc. Molecular-level mixing of the constituents and "positioning effect" of the additive may have brought about the formation of new compounds. Routes are proposed for the appearance of these substances. Horizontal burning tests were also conducted on polymer and blends and the results are discussed. Activation energies and reaction orders were calculated. Activation energy is highest for the polymer, i.e., 138.9 Kcal/mol while the range for blends is from 51 to 39 Kcal/mol. Stability zones are highlighted for the blends. The interaction between the blended parts seems to be chemical in nature.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

Estimation of Pyrolysis Properties for Fire Propagation Analysis of Furniture Materials (가구소재의 화재전파해석을 위한 열해리 물성 평가)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The present study has been conducted to investigate the reaction kinetics and pyrolysis parameters for flame propagation analysis of furniture material components. TGA measurement for component materials such as MDF (medium density fiberboad) panel including coating material, synthetic leather and foam cushion are performed under maximum temperature of $600^{\circ}C$ and heating rate of $10^{\circ}C/min$. The results of TGA have shown that the peak temperature of MDF panel was $324^{\circ}C$ and the initial peak temperature of coating material decreased by $270{\sim}280^{\circ}C$. In the case of synthetic leather and foam materials, the reference temperature and reference rate depend on the type of polymer consisting the sample, the initial kinetic characteristics was classified into 2 categories of about $270^{\circ}C$ and $420^{\circ}C$ of reference temperature for the tested synthetic materials. The present study showed the pyrolysis parameters of reference temperature and reference rate proposed by Lyon to evaluate the pre-exponential factor and activation energy. The present study can contribute to improve the reliability of computational fire analysis and enhance the understanding of fire propagation phenomena based on the thermal properties study of material.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

The Study on Phase Separation Development by Curing Reaction Rate for Unsaturated Polyester/Polyvinylacetate Semi-IPN (Unsaturated Polyester/Polyvinylacetate Semi-IPN의 경화반응속도에 따른 상분리현상 연구)

  • Chang, Won-Young;Kim, Moo-Sool;Kim, Jin-Hwan;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.78-89
    • /
    • 2001
  • Morphological changes of unsaturated polyester/polyvinylacetate semi-IPN were studied while the phase separation and the cure reaction occurred in a competing fashion. The light scattering and thermal analysis techniques were used to investigate the phase separation rates and mechanical properties resultantly induced by molecular diffusion of thermoplastic polymer during the curing process of thermosetting polymer. The reaction activation energy was calculated by using Flynn-Wall method and the semi-IPN structure exhibited various phase-separation morphological characteristics. When PVAc composition was 10 wt%, the phase separation was not observed during the curing reaction, but the phase separation occurred in a similar fashion to nucleation and growth(NG) mechanism at room temperature. On the other hand, when PVAc composition was over 11.65 wt%, the phase separation was generated in the middle of the curing process. Consequently, the phase separation seemed to influence the curing reaction rate, which was also supported by the changing activation energy with conversion and PVAc composition. Finally, the total scattered intensity was measured at various temperature, and subsequently the diffusion rates of phase separation R(${\beta}m$) were evaluated.

  • PDF

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior

  • Zhu, Jiahong;Xu, Yingjie;Feng, Xiao;Zhu, Xiao
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.148-155
    • /
    • 2018
  • To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.

Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler (순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석)

  • Park, Kyoung-Il;Kim, Dong-Won;Lee, Tae-Hee;Lee, Jong-Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.692-699
    • /
    • 2013
  • In this study, isothermal (350, 375, 400, 425, 450, 500, $850^{\circ}C$) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of $375{\sim}450^{\circ}C$ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method ($0.5{\leq}X{\leq}0.9$) respectively. Mean-while, the devolatilization time ($t_{dev}$) according to particle size (d) of RPF could be expressed as $t_{dev}=10.38d^{2.88}$ at $850^{\circ}C$, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was $x{\leq}1.58d^{1.44}$.

Synthesis of Silica/Alumina Composite Membrane Using Sol-Gel and CVD Method for Hydrogen Purification at High Temperature (Sol-gel 및 CVD법을 이용한 고온 수소 분리용 silica/alumina 복합막의 합성)

  • 서봉국;이동욱;이규호
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2001
  • Silica membranes were prepared on a porous ${\alpha}$-alumina tube with pore size of 150nm by sol-gel and chemical vapor deposition(CVD) method for hydrogen separation at high temperatures. Silica and ${\gamma}$-lumina membranes formed by the sol-gel method possessed a large amount of mesopores of a Knudsen diffusion regime. In order to improve the $H_2$ selectivity, silica was deposited in the sol-gel derived silica/${\gamma}$-alumina layer by thermal decomposition of tetraethyl orthosilicate(TEOS) at $600^{\circ}C$. The CVD with forced cross flow through the porous wall of the support was very effective in plugging mesopores that were left unplugged in the membranes. The CVD modified silica/alumina composite membrane completely rejected nitrogen permeation and thus showed a high $H_2$ selectivity by molecular sieve effect. the permeation of hydrogen was explained by activated diffusion and the activation energy was 9.52kJ/mol.

  • PDF

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain (주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.478-485
    • /
    • 2006
  • Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.