DOI QR코드

DOI QR Code

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC

등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발

  • Kim, Yoocheon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Jungsu (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Kwon, Kuktae (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2016.02.05
  • Accepted : 2016.03.14
  • Published : 2016.04.01

Abstract

The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

Differential Scanning Calorimetry(DSC) 실험 데이터를 이용하여 고에너지 물질의 반응속도식을 추출해내는 이론적 방법을 제안하고 알루미늄 고함유 화약(RDX/HTPB/Al)에 대한 반응속도식 추출을 수행하였다. DSC 실험 결과는 Friedman 등전환법으로 분석되었다. 질량분율에 따른 활성화에너지와 빈도인자를 추출해 내어 반응속도식을 완성하였다. 추출된 반응속도식은 고에너지 물질의 화학반응과정을 몇 단계의 주요단계로 가정하는 형태가 아닌 전체 화학반응 과정을 나타내는 형태를 갖는다. 이는 기존의 ODTX 실험을 통해 추출되는 화학반응속도식 형태에 비해 이론적 측면과 정확성 측면에서 상당한 장점을 갖는다. 추출된 반응속도식의 검증을 위해 화학반응률 그리고 생성물 질량분율에 대해 DSC 실험과 동일한 조건하에서 전산모사를 수행하였으며 실험값과 잘 일치함을 확인하였다. 또한 완속가열 전산모사를 수행하였으며 실험결과와 비교하여 DSC 반응속도식의 전산모사에의 적용가능성을 확인하였다.

Keywords

References

  1. McClelland, M.A., Maienschein, J.L., Nichols, A.L., Wardell, J.F., Atwood, A.I. and Curran, P.O., "ALE3D Model predications and Materials Characterization for the Cookoff Response of PBXN-109," Joint Army Navy NASA Air force 38th Combustions Subcommittee, Destin, FL, U.S.A., UCRL-JC-145756, Apr. 2002.
  2. Kaneshige, M.J., Renlund, A.M., Schmitt, R.G. and Erikson, W.W., "Cook-Off Experiments for Model Validation at Sandia National Laboratories," Albuquerque, NM 87185, 2002.
  3. Yoh, J.J., McClelland, M.A., Maienschein, J.L., Wardell, J.F. and Tarver, C.M., "Simulating thermal explosion of RDX-based explosives: Model comparison with experiment," Journal of Applied Physics, Vol. 97, 083504, 2005. https://doi.org/10.1063/1.1863429
  4. Friedman, H.L., "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic," Journal of Polymer Science, Vol. 6, pp. 183-195, 1963.
  5. Roduit, B., Borgeat, Ch., Berger, B., Folly, P., Andres, H., Schadeli, U. and Vogelsanger, B., "Up scaling of DSC Data of High Energetic Materials Simulation of Cook Off Experiments," Journal of Thermal Analysis and calorimetry, Vol. 85, No. 1, pp. 195-202, 2006. https://doi.org/10.1007/s10973-005-7388-y
  6. Roduit, B., Folly, P., Berger, B., Mathieu, J., Sarbach, A., Andres, H., Ramin, M. and Vogelsanger, B., "Evaluating SADT by Advanced Kinetics-based Simulation Approach," Journal of Thermal Analysis and calorimetry, Vol. 93, No. 1, pp. 153-160, 2008. https://doi.org/10.1007/s10973-007-8865-2
  7. Vyazovkin, S., Burnham, A. K., Criado, J. M., Perez-Maqueda, L. A., Popescu, C. and Sbirrazzuoli, N., "ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis dat," Thermochimica Acta, Vol. 520, No. 1, pp. 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034