Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.06.025

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior  

Zhu, Jiahong (Department of Chemistry, Shaoxing University)
Xu, Yingjie (Department of Chemistry, Shaoxing University)
Feng, Xiao (Department of Chemistry, Shaoxing University)
Zhu, Xiao (School of Chemistry and Chemical Engineering, Qufu Normal University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.67, no., 2018 , pp. 148-155 More about this Journal
Abstract
To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.
Keywords
Deep eutectic solvent; Microstructure; Physicochemical property; Spectroscopy; Sulfur dioxide absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Wang, P. Xing, X. Zheng, H. Cao, G. Yang, X. Zheng, RSC Adv. 5 (2015) 59022.   DOI
2 M.J. Rodriguez-Alvarez, C. Vidal, S. Schumacher, J. Borge, J. Garcia-Alvarez, Chem. Eur. J. 23 (2017) 3425.   DOI
3 D. Carriazo, M.C. Serrano, M.C. Gutierrez, M.L. Ferrer, F. del Monte, Chem. Soc. Rev. 41 (2012) 4996.   DOI
4 C. Florindo, L. Romero, I. Rintoul, L. Branco, I.M. Marrucho, ACS Sustain. Chem. Eng 6 (2018) 3888.   DOI
5 D.V. Wagle, H. Zhao, G.A. Baker, Acc. Chem. Res. 47 (2014) 2299.   DOI
6 E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060.   DOI
7 W. Guo, Y. Hou, S. Ren, S. Tian, W. Wu, J. Chem. Eng. Data 58 (2013) 866.   DOI
8 M. Francisco, A. van den Bruinhorst, M.C. Kroon, Angew. Chem. Int. Ed. 52 (2013) 3074.   DOI
9 H. Passos, D.J.P. Tavares, A.M. Ferreira, M.G. Freire, J.A.P. Coutinho, ACS Sustain. Chem. Eng. 4 (2016) 2881.   DOI
10 J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song, Y. Xu, J. Mol. Liq. 232 (2017) 182.   DOI
11 H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26 (2015) 1518.   DOI
12 H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, Trans. Nonferrous Met. Soc. China 26 (2016) 759.   DOI
13 H. Teymourinia, M. Salavati-Niasari, O.Amiri, M. Farangi, J. Mol. Liq. 251 (2018) 267.   DOI
14 S. Ahmadian-Fard-Fini, M. Salavati-Niasari, H. Safardoust-Hojaghan, J. Mater. Sci.: Mater. Electron. 28 (2017) 16205.   DOI
15 A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 70-71 (2003).
16 Q. Zhang, K.D.O. Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108.   DOI
17 D. Yang, Y. Han, H. Qi, Y. Wang, S. Dai, ACS Sustain. Chem. Eng. 5 (2017) 6382.   DOI
18 E. Ali, M.K. Hadj-Kali, S. Mulyono, I. Alnashef, Int. J. Greenh. Gas Control 47 (2016) 342.   DOI
19 L.F. Zubeir, C. Held, G. Sadowski, M.C. Kroon, J. Phys. Chem. B 120 (2016) 2300.   DOI
20 K. Zhang, S. Ren, Y. Hou, W. Wu, J. Hazard. Mater. 324 (2017) 457.   DOI
21 M.A. Farajzadeh, M.R.A. Mogaddam, B. Feriduni, RSC Adv. 6 (2016) 47990.   DOI
22 Y.R. Lee, K.H. Row, J. Ind. Eng. Chem. 39 (2016) 87.   DOI
23 L. Duan, L.-L. Dou, L. Guo, P. Li, E.-H. Liu, ACS Sustain. Chem. Eng. 4 (2016) 2405.   DOI
24 G. Li, C. Yan, B. Cao, J. Jiang, W. Zhao, J. Wang, T. Mu, Green Chem. 18 (2016) 2522.   DOI
25 R.A. Ando, L.J.A. Siqueira, F.C. Bazito, R.M. Torresi, P.S. Santos, J. Phys. Chem. B 111 (2007) 8717.
26 M.A. Gebbie, A.M. Smith, H.A. Dobbs, G.G. Warr, X. Banquy, M. Valtiner, M.W. Rutland, J.N. Israelachvili, S. Perkin, R. Atkin, Chem. Commun. 53 (2017) 1214.   DOI
27 M.A. Gebbie, H.A. Dobbs, M. Valtiner, J.N. Israelachvili, PNAS 112 (2015) 7432.   DOI
28 D. Yang, S. Zhang, D.E. Jiang, S. Dai, Phys. Chem. Chem. Phys. 20 (2018) 15168, doi:http://dx.doi.org/10.1039/C8CP02250J.   DOI
29 Y. Xu, J. $CO_2$ Util. 19 (2017) 1.   DOI
30 N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701.   DOI
31 J.-Z. Yang, X.-M. Lu, J.-S. Gui, W.-G. Xu, Green Chem. 6 (2004) 541.   DOI
32 N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701.   DOI
33 J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, London, 1969.
34 M. Deetlefs, K.R. Seddon, M. Shara, New J. Chem. 30 (2006) 317.   DOI
35 P. Diaz-Rodriguez, J.C. Cancilla, N.V. Plechkova, G. Matute, K.R. Seddon, J.S. Torrecilla, Phys. Chem. Chem. Phys. 16 (2014) 128.   DOI
36 S. Zhang, X. Li, H. Chen, J. Wang, J. Zhang, M. Zhang, J. Chem. Eng. Data 49 (2004) 760.   DOI
37 Y. Xu, T. Li, C. Peng, H. Liu, Ind. Eng. Chem. Res. 54 (2015) 9038.   DOI
38 Q.-S. Liu, M. Yang, P.-P. Li, S.-S. Sun, U. Welz-Biermann, Z.-C. Tan, Q.-G. Zhang, J. Chem. Eng. Data 56 (2011) 4094.   DOI
39 X. Wang, Y. Chi, T. Mu, J. Mol. Liq. 193 (2014) 262.   DOI
40 A.P. Abbott, J.C. Barron, K.S. Ryder, D. Wilson, Chem. Eur. J. 13 (2007) 6495.   DOI
41 K. Fumino, E. Reichert, K. Wittler, R. Hempelmann, R. Ludwig, Angew. Chem. Int. Ed. 51 (2012) 6236.   DOI
42 Y.-Z. Zheng, N.-N. Wang, J.-J. Luo, Y. Zhou, Z.-W. Yu, Phys. Chem. Chem. Phys.15 (2013) 18055.   DOI
43 L. Zhang, Z. Xu, Y. Wang, H. Li, J. Phys. Chem. B 112 (2008) 6411.   DOI
44 W.J. Shaw, J.C. Linehan, N.K. Szymczak, D.J. Heldebrant, C. Yonker, D.M. Camaioni, R.T. Baker, T. Autrey, Angew. Chem. Int. Ed. 47 (2008) 7493.
45 L. Hu, J. Wan, G. Zeng, A. Chen, G. Chen, Z. Huang, K. He, M. Cheng, C. Zhou, W. Xiong, C. Lai, P. Xu, Environ. Sci.: Nano 4 (2017) 2018.   DOI
46 C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B: Environ. 220 (2018) 202.   DOI
47 C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, W. Xiong, Y. Deng, M. Wen, ACS Sustain. Chem. Eng. 6 (2018) 4174.   DOI
48 G. Zeng, J. Wan, D. Huang, L. Hu, C. Huang, M. Cheng, W. Xue, X. Gong, R. Wan, D. Jiang, J. Hazard. Mater. 339 (2017) 354.   DOI
49 H. Safardoust-Hojaghan, M. Salavati-Niasari, J. Cleaner Prod. 148 (2017) 31.   DOI
50 X. Tang, Y. Xu, X. Zhu, Y. Lu, Magn. Reson. Chem. 56 (2018) 73.   DOI
51 H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, J. Mol. Liq. 241 (2017) 1114.   DOI
52 H. Khojasteh, M. Salavati-Niasari, H. Safajou, H. Safardoust-Hojaghan, Diamond Relat. Mater. 79 (2017) 133.   DOI
53 Q.-G. Zhang, N.-N. Wang, S.-L. Wang, Z.-W. Yu, J. Phys. Chem. B 115 (2011) 11127.   DOI
54 Y. Xu, W. Qian, Q. Gao, H. Li, Chem. Eng. Sci. 74 (2012) 211.   DOI
55 Y. Xu, H. Li, ChemPhysChem 16 (2015) 2861.   DOI
56 M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, M.A. Hashim, J. Mol. Liq. 215 (2016) 98.   DOI
57 A. Hayyan, F.S. Mjalli, I.M. AlNashef, T. Al-Wahaibi, Y.M. Al-Wahaibi, M.A. Hashim, Thermochim. Acta 541 (2012) 70.   DOI
58 P.K. Kilaru, P. Scovazzo, Ind. Eng. Chem. Res. 47 (2008) 910.   DOI