Browse > Article

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis  

Jeong, Hae-Deuk (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Yoon, Chang-Rok (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Jong-Hyeok (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Bang, Dae-Suk (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Elastomers and Composites / v.45, no.1, 2010 , pp. 51-57 More about this Journal
Abstract
Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.
Keywords
cellulose; thermal property; thermogravimetric analysis; acid hydrolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. J. Orts, L. Godbout, R. H. Marchessault, and J. F. Revol, "Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study", Macromolecules, 31, 5717 (1998).   DOI   ScienceOn
2 D. Y. Kim, Y. Nishiyama, M. Wada, and S. Kuga, "Highyield carbonization of cellulose by sulfuric acid impregnation", Cellulose, 8, 29 (2001).   DOI   ScienceOn
3 A. S. Herrmann, J. Nickel, and U. Riedel, "Construction materials based upon biologically renewable resources -from components to finished parts", Polym. Degrad. Stab., 59, 251 (1998).   DOI   ScienceOn
4 W. G. Glasser, R. Taib, R. K. Jain, and R. Kander, "Fiber-reinforced cellulosic thermoplastic composites", J. Appl. Polym. Sci., 73, 1329 (1999).   DOI   ScienceOn
5 G. Varhegy, Jr M. J. Antal, T. Sezkely, F. Till, and E. Jakab, "Simultaneous thermogravimetric - mass spectrometric studies on the thermal decomposition of biopolymers", Energy Fuels, 2, 267 (1988).   DOI
6 S. Julien, E. Chornet, and R. P. Overend, "Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose", J. Anal. Appl. Pyrolysis, 27, 25 (1993).   DOI   ScienceOn
7 J. E. J. Staggs, "Discrete bond-weighted random scission of linear polymers", Polymer, 47, 897 (2006).   DOI   ScienceOn
8 J. Scheirs, G. Camino, and W. Tumiatti, "Overview of water evolution during the thermal degradation of cellulose", Eur. Polym. J., 37, 933 (2001).   DOI   ScienceOn
9 A. Broido, "A simple sensitive graphical method of treating thermogravimetric analysis data", J. Polym. Sci. Part A-2, 7, 1761 (1969).   DOI
10 H. H. Horowitz and G. Metzger, "A new analysis of thermogravimetric traces", Anal. Chem., 35, 1465 (1963).
11 A. Dufresne and M. R. Vignon, "Improvement of starch film performances using cellulose microfibrils", Macromolecules, 31, 2693 (1998).   DOI   ScienceOn
12 V. Favier, H. Chanzy, and J. Y. Cavaille, "Polymer nanocomposites reinforced by cellulose whiskers", Macromolecules, 28, 6365 (1995).   DOI   ScienceOn
13 J. Araki, M. Wada, S. Kuga, and T. Okano, "Birefringent glassy phase of a cellulose microcrystal suspension", Langmuir, 16, 2413 (2000).   DOI   ScienceOn
14 G. Chauve, L. Heux, R. Arouini, and K. Mazeau, "Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy", Biomacromolecules, 6, 2025 (2005).   DOI   ScienceOn
15 M. A. S. A. Samir, F. Alloin, J. Y. Sanchez, N. E. I. Kissi, and A. Dufresne, "Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension", Macromolecules, 37, 1386 (2004).
16 M. A. S. A. Samir, F. Alloin, W. Gorecki, J. Y. Sanchez, and A. Dufresne, "Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals", J. Phys. Chem., B, 108, 10845 (2004).   DOI   ScienceOn
17 B. G. Ranby, "The cellulose micelles", Tappi., 35, 53 (1952).
18 R. H. Marchessault, F. F. Morehead, and M. J. Koch, "Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape", J. Colloid Sci., 16, 327 (1961).   DOI   ScienceOn
19 V. Favier, H. Chanzy, and J. Y. Cavaille, "Polymer nanocomposites reinforced by cellulose whiskers", Macromolecules, 28, 6365 (1995).   DOI   ScienceOn
20 J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, "Helicoidal self-ordering of cellulose microfibrils in aqueous suspension", Int. J. Biol. Macromol., 14, 170 (1992).   DOI   ScienceOn
21 S. Katz, R. P. Beatson, and A. M. Scallan, "The determination of strong and weak acidic groups in sulfite pulps", Sven. Papperstidn., 6, 48 (1984).
22 R. H. Marchessault, F. F. Morehead, and N. M. Walter, "Liquid crystal systems from fibrillar polysaccharides", Nature, 184, 632 (1959).   DOI
23 D. Fengel and G. Wegener, "Wood: Chemistry, Ultrastructure, Reactions", Walter de Gruyter: New York, (1984).
24 J. Araki, M. Wada, S. Kuga, and T. Okano, "Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose", Colloids Surf., A, 142, 75 (1998).   DOI   ScienceOn
25 A. Sturcova, G. R. Davies, and S. J. Eichhorn, "Elastic modulus and stress-transfer properties of tunicate cellulose whiskers", Biomacromolecules, 6, 1055 (2005).   DOI   ScienceOn
26 C. Tokoh, K. Takabe, M. Fujita, and H. Saiki, "Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan", Cellulose, 5, 249 (1998).   DOI   ScienceOn
27 M. W. W. Grunert, "Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals", J. Polym. Environ., 10, 27 (2002).   DOI   ScienceOn
28 K. Tashiro and M. Kobayashi, "Theoretical avaluation of three dimensional elastic constants of native and regenerated celluloses; role of hydrogen bonds", Polymer, 32, 1516 (1991).   DOI   ScienceOn
29 S. Hill, "Cars that grow on trees", New Scientist. February, 36 (1997).
30 R. Kozlowski and B. Mieleniak, "New trends in the utilization of byproducts of fibre crops residue in pulp and paper industry, building, engineering, automotive industry and interior furnishing", Proceedings of the 3rd International Symposium on Natural Polymers and Composites (ISNaPol 2000), 504 (2000).
31 A. L. Leao, R. Rowell, and N. Tavares, "Application of natural fibers in automotive industry in Brazil", Science and technology of polymers and advanced materials. Plenum Press: New York, 755 (1998).
32 B. Dahlke, H. Larbig, H. D. Scherzer, and R. Poltrock, "Natural fiber reinforced foams based on renewable resources for automotive interior applications", J. Cellular Plast., 34, 361 (1998).   DOI
33 W. A. Knudson and H. C. Peterson, The market potential of biobased fibers and nanofibers in the auto industry. Product center for Agriculture and Natural Resources, Michigan State University, (2005).