DOI QR코드

DOI QR Code

Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler

순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석

  • Park, Kyoung-Il (Power Generation Laboratory, Korea Electric Power Corporation(KEPCO) Research Institute) ;
  • Kim, Dong-Won (Power Generation Laboratory, Korea Electric Power Corporation(KEPCO) Research Institute) ;
  • Lee, Tae-Hee (Power Generation Laboratory, Korea Electric Power Corporation(KEPCO) Research Institute) ;
  • Lee, Jong-Min (Power Generation Laboratory, Korea Electric Power Corporation(KEPCO) Research Institute)
  • 박경일 (한전 전력연구원 발전연구소) ;
  • 김동원 (한전 전력연구원 발전연구소) ;
  • 이태희 (한전 전력연구원 발전연구소) ;
  • 이종민 (한전 전력연구원 발전연구소)
  • Received : 2013.07.17
  • Accepted : 2013.09.05
  • Published : 2013.12.01

Abstract

In this study, isothermal (350, 375, 400, 425, 450, 500, $850^{\circ}C$) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of $375{\sim}450^{\circ}C$ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method ($0.5{\leq}X{\leq}0.9$) respectively. Mean-while, the devolatilization time ($t_{dev}$) according to particle size (d) of RPF could be expressed as $t_{dev}=10.38d^{2.88}$ at $850^{\circ}C$, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was $x{\leq}1.58d^{1.44}$.

본 연구에서는 국내 상용 순환유동층 보일러에서 아역청탄과 혼소용 연료로 사용예정인 폐플라스틱 고형연료(RPF)의 열분해 반응특성을 규명하기 위해 열천칭 반응기를 이용하여 등온(350, 375, 400, 425, 450, 500, $850^{\circ}C$) 열분해 실험을 수행하였다. 등온 열분해 결과, 반응온도 구간 $375{\sim}450^{\circ}C$에서의 반응모델 변화는 관찰되지 않았으며, 12개 반응모델 중 1차 화학반응(F1)이 가장 적합한 반응모델로 판명되었다. 이때 Arrhenius 식을 사용하여 계산한 활성화에너지는 39.44 kcal/mol이었으며, Iso-conversional 방법을 적용할 경우 활성화에너지 평균값($0.5{\leq}X{\leq}0.9$ 구간)은 36.96 kcal/mol로 반응모델 결정 여부와 관계없이 유사한 값을 보였다. 한편 순환유동층보일러의 운전온도인 $850^{\circ}C$에서 RPF 입도(d) 변화에 따른 탈휘발 시간은 $t_{dev}=10.38d^{2.88}$으로 표현할 수 있었으며, 보일러 내부에서 RPF가 균일하게 연소되기 위해서는 연료 입도와 평균 분산 거리(x)가 $x{\leq}1.58d^{1.44}$의 상관관계를 만족하여야 함을 확인할 수 있었다.

Keywords

References

  1. https://epsis.kpx.or.kr, in: http://www.kpx.or.kr.
  2. Miller, B. G. and Miller, S. F., Fluidized-Bed Firing Systems, in: Miller, B. G. and Tillman, D. A. (Eds.), Combustion Engineering Issues for Solid Fuel Systems," Elsevier, 275-340(2008).
  3. Koornneef, J., Junginger, M. and Faaij, A., "Development of Fluidized Bed Combustion : An Overview of Trends, Performance and Cost," Prog. Energy Combust. Sci., 33, 19-55(2007). https://doi.org/10.1016/j.pecs.2006.07.001
  4. Wu, Z., "Developments in Fluidised Bed Combustion Technology," CCC/110, IEA Clean Coal Centre, London(2006).
  5. Galwey, A. K. and Brown, M. E., "Kinetic Background to Thermal Analysis and Calorimetry, in: Brown, M. E. (Ed.), Handbook of Thermal Analysis and Calorimetry," Elsevier, 147-224(1998).
  6. Kim, S., Kavitha, D., Yu, T. U., Jung, J., Song, J., Lee, S. and Kong, S., "Using Isothermal Kinetic Results to Estimate Kinetic Triplet of Pyrolysis Reaction of Polypropylene," J. Anal. Appl. Pyrolysis, 81, 100-105(2008). https://doi.org/10.1016/j.jaap.2007.09.004
  7. Kim, S. and Kim, Y., "Using Isothermal Kinetic Results to Estimate Kinetic Triplet of the Pyrolysis of High Density Polyethylene,"J. Anal. Appl. Pyrolysis, 73, 117-121(2005). https://doi.org/10.1016/j.jaap.2005.01.001
  8. Leckner, B. and Werther, J., "Scale-up of Circulating Fluidized Bed Combustion," Energy Fuels, 14, 1286-1292(2000). https://doi.org/10.1021/ef0001078
  9. Olsson, J., Pallares, D. and Johnsson, F., "Lateral Fuel Dispersion in a Large-scale Bubbling Fluidized Bed," Chem. Eng. Sci., 74, 148-159(2012). https://doi.org/10.1016/j.ces.2012.02.027
  10. Leckner, B., Szentannai, P. and Winter, F., "Scale-up of Fluidized-bed Combustion-A Review," Fuel, 90, 2951-2964 (2011). https://doi.org/10.1016/j.fuel.2011.04.038
  11. Pillai, K. K., "The Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds," J. Inst. Energy, 54, 142-150 (1981).
  12. Gardiner, C. W., Handbook of stochastic methods, 2nd ed., Springer, Berlin(1997)
  13. Schlichthaerle, P. and Werther, J., "Solids Mixing in the Bottom Zone of a Circulating Fluidized Bed," Powder Technol., 120, 21-33(2001). https://doi.org/10.1016/S0032-5910(01)00342-4
  14. Cozzani, V., Petarca, L. and Tognotti, L., "Devolatilization and Pyrolysis of Refuse Derived Fuels : Characterization and Kinetic Modelling by a Thermogravimetric and Calorimetric Approach," Fuel, 74(6), 903-912(1995). https://doi.org/10.1016/0016-2361(94)00018-M
  15. Lee, J., Kim, D. and Kim, J., "Reactivity Study of Combustion for Coals and Their Chars in Relation to Volatile Content," Korean J. Chem. Eng., 26(2) 506-512(2009). https://doi.org/10.1007/s11814-009-0086-x
  16. Ptacek, P., Kubatova, D., Havlica, J., Brandstetr, J., Soukal, F. and Opravil, T., "Isothermal Kinetic Analysis of the Thermal Decompostion of Kaolinite : The Thermogravimetric Study," Thermochim. Acta, 501, 24-29(2010). https://doi.org/10.1016/j.tca.2009.12.018
  17. Vyazovkin, S. V. and Lesnikovich, A. I., "An Approach to the Solution of the Inverse Kinetic Problem in the Case of Complex Processes : Part 1. Methods Employing a Series of Thermoanalytical Curves," Thermochim. Acta, 165, 273-280 (1990). https://doi.org/10.1016/0040-6031(90)80227-P