Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.9.3295

Characterization of Poly(methyl methacrylate)-tin (IV) Chloride Blend by TG-DTG-DTA, IR and Pyrolysis-GC-MS Techniques  

Arshad, Muhammad (Chemistry Division, Directorate of Science, PINSTECH)
Masud, Khalid (NLP)
Arif, Muhammad (Department of Chemistry, Bahauddin Zakariya University)
Rehman, Saeed-Ur (Institute of Chemical Sciences, University of Peshawar)
Saeed, Aamer (Department of Chemistry, Quaid-i-Azam University)
Zaidi, Jamshed Hussain (Chemistry Division, Directorate of Science, PINSTECH)
Publication Information
Abstract
Thermal behavior of poly (methyl methacrylate) was analyzed in the presence of tin (IV) chloride. Five different proportions - polymer to additive - were selected for casting films from common solvent. TG, DTG and DTA were employed to monitor thermal degradation of the systems. IR and py-GC-MS helped identify the decomposition products. The blends start degrading at a temperature lower than that of the neat polymer and higher than that of the pure additive. Complex formation between tin of additive and carbonyl oxygen (pendent groups of MMA units) was noticed in the films soon after the mixing of the components in the blends. The samples were also heated at three different temperatures to determine the composition of residues left after the expulsion of volatiles. The polymer, blends and additive exhibited a one step, two-step and three-step degradation, respectively. $T_0$ is highest for the polymer, lowest for the additive and is either $60^{\circ}C$ or $70^{\circ}C$ for the blends. The amount of residue increases down the series [moving from blend-1 (minimum additive concentration) to blend-5 (maximum additive concentration)]. For blend-1, it is 7% of the original mass whereas it is 16% for blend-5. $T_{max}$ also goes up as the concentration of additive in the blends is elevated. The complexation appears to be the cause of observed stabilization. Some new products of degradation were noted apart from those reported earlier. These included methanol, isobutyric acid, acid chloride, etc. Molecular-level mixing of the constituents and "positioning effect" of the additive may have brought about the formation of new compounds. Routes are proposed for the appearance of these substances. Horizontal burning tests were also conducted on polymer and blends and the results are discussed. Activation energies and reaction orders were calculated. Activation energy is highest for the polymer, i.e., 138.9 Kcal/mol while the range for blends is from 51 to 39 Kcal/mol. Stability zones are highlighted for the blends. The interaction between the blended parts seems to be chemical in nature.
Keywords
Poly(methyl methacrylate); Stannic chloride; Thermoanalytical sifting; GC-MS scrutiny; Activation energy;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Zulfiqar, S.; Masud, K. Polym. Degrad. Stabili. 2000, 70(2), 229.   DOI   ScienceOn
2 Zulfiqar, S.; Masud, K.; Ameer, Q. Polym. Degrad. Stabili. 2002, 77(3), 457.   DOI   ScienceOn
3 Zulfiqar, S.; Masud, K. Polym. Degrad. Stabili. 2002, 78(2), 305.   DOI   ScienceOn
4 Arshad, M.; Masud, K.; Arif, M.; Rehman, S.; Chohan, Z. H.; Arif, M.; Zaidi, J. H.; Saeed, A.; Qureshi, A. H. J. Therm. Anal. Calorim. 2009, 96(3), 873.   DOI
5 Arshad, M.; Masud, K.; Arif, M.; Rehman, S.; Chohan, Z. H.; Arif, M.; Qureshi, A. H.; Saeed, A.; Salma, U.; Awan, M. S. The Nucleus 2008, 45(1-2), 63.
6 Arshad, M.; Masud, K.; Arif, M.; Rehman, S.; Zaidi, J. H.; Chohan, Z. H.; Arif, M.; Saeed, A.; Yasin, T. Natural Sci. 2010, 2(4), 307.   DOI
7 Riddick, J.A.; Bunger, W. B.; Sakano, T. K. Organic Solvents- Physical Properties and Methods of Purification; John-Wiley and Sons: New York, 1986.
8 Grassie, N.; McNeill, I. C.; Cooke, I. J. Appli. Polym. Sci. 1968, 12, 831.   DOI
9 Horowitz, H. H.; Metzger, G. Anal. Chem. 1963, 35, 1464.   DOI
10 Flammability Test, UL94, ASTM D 635.
11 Sain, M.; Park, S. H.; Suhara, F.; Law, S. Polym. Degrad. Stabili. 2004, 83, 363.   DOI   ScienceOn
12 Chandrasiri, J. A.; Wilkie, C. A. Polym. Degrad. Stabili. 1994, 45(1), 91.   DOI   ScienceOn
13 Chandrasiri, J. A.; Wilkie, C. A. Polym. Degrad. Stabili. 1994, 45(1), 83.   DOI   ScienceOn
14 Zulfiqar, S.; Masud, K.; Ameer, Q. J. Therm. Anal. Calorim. 2003, 73(3), 877.   DOI
15 Sobhi, H.; Matthews, M. E.; Grandy, B.; Masnovi, J.; Riga, A. T. J. Therm. Anal. Calorim. 2008, 93(2), 535.   DOI
16 Gao, M.; Wu, W.; Yan, Y. J. Therm. Anal. Calorim. 2009, 95(2), 605.   DOI
17 Worzakowska, M. J. Therm. Anal. Calorim. 2009, 96(1), 235.   DOI
18 Aboulkas, A.; Harfi, K. E.; Bouadili, A. E.; Nadifiyine, M.; Benchanaa, M. J. Therm. Anal. Calorim. 2009, 96(3), 883.   DOI
19 Grassie, N.; McNeill, I. C.; Cooke, I. J. Appli. Polym. Sci. 1968, 12, 831.   DOI
20 Gentilhomme, A.; Cochez, M.; Ferriol, M.; Oget, N.; Mieloazynski, J. L. Polym. Degrad. Stabili. 2003, 82, 347 and references therein.   DOI   ScienceOn
21 Zulfiqar, S.; Paracha, A.; Masud, K. Polym. Degrad. Stabili. 1996, 52(1), 89.   DOI   ScienceOn
22 Zulfiqar, S.; Masud, K.; Siddique, B.; Paracha, A. Polym. Degrad. Stabili. 1996, 52(3), 293.   DOI   ScienceOn
23 Zulfiqar, S.; Masud, K.; Piracha, A.; McNeill, I. C. Polym. Degrad. Stabili. 1997, 55(3), 257.   DOI   ScienceOn