Browse > Article

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain  

Yoon, Doo-Soo (Department of Polymer Science & Engineering, Chosun University)
Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University)
Jo, Byung-Wook (Department of Chemical Engineering, Chosun University)
Publication Information
Polymer(Korea) / v.30, no.6, 2006 , pp. 478-485 More about this Journal
Abstract
Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.
Keywords
poly(hydroxyamide)s; poly(benzoxazole)s; thermal cyclization reaction; activation energy; heat release rate;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. K. Ghosh and K. L. Mittal, Polyimides, Marcel Dekker, New York, 1996
2 J. F. Wolfe, F. E. Arnold, and B. H. Loa, Macromolecules, 14, 915 (1981)   DOI
3 R. E. Lyon, PMSE, 71, 26 (1994)
4 S.-H. Hsiao and C.-H. Yu, Macromol. Chem. Phys., 199, 1247 (1998)   DOI   ScienceOn
5 R. J. Farris and B. W. Jo, CUMIRP Report(Univ. Mass.), part 1 (1997)
6 M. P. Stevens, Polymer Chemistry An Introduction, Ixfird Yniversity Press, New York, 1990
7 R. N. Walters and R. E. Lyon, J. Appl. Polym. Sci., 87, 548 (2003)   DOI   ScienceOn
8 Y.-H. Hu and C.-Y. Chen, Polym. Degrad. Stab., 80, 1 (2003)   DOI
9 S. S. Kim and Y. J. Chung, J. Korean Ind. Eng. Chem., 14, 793 (2003)
10 R. Duran, M. Ballauff, M. Wenzel, and G. Wegner, Macromolecules, 21, 2897 (1988)   DOI   ScienceOn
11 J. H. Jang and R. J. Faris, Polym. Eng. Sci., 39, 638 (1999)   DOI   ScienceOn
12 C. E. Stroog, Preg. Polym, Sci., 16, 561 (1991)   DOI   ScienceOn
13 D. H. Baik, E. K. Kim, and M. K. Kim, J. of the Korean Fiber Society, 40, 13 (2003)
14 K S. Lee, H. M. Kim, J. M. Rhee, and S. M. Lee, Makromol. Chem., 192, 1033(1991)   DOI
15 J. F. Wolfe and F. E. Arnold, Macromolecules, 14, 909 (1981)   DOI
16 Y. Imai, K. Itaya, and M.-A. Kakimoto, Macromol. Chem. Phys., 17, 201 (2000)
17 R. N. Walters and R. E. Lyon, J. Anal. Appl. Pyrolysis, 71, 27 (2004)   DOI   ScienceOn
18 H. Zhao, Y.-Z.wang, D.-Y. Wang, B. Wu, D.-Q. Chen, X.-L. Wang, and K.-K. Yang, Polym. Degrad. Stab., 80, 135 (2003)   DOI   ScienceOn
19 T. Kubota and R. Nakanish, Polym. Sci., Part B, 2, 655 (1964)   DOI
20 M. F. Angel, A. E. Lozano, J. D. Abajo, and J. G. Campa, Polymer, 42, 7933 (2001)   DOI   ScienceOn
21 H. Zhang, R. J. Farris, and P. R. Westmoreland, Macromolecules, 36, 3944 (2003)   DOI   ScienceOn
22 S.-H. Hsiao and Y. H. Huang, Eur. Polym. J., 40, 1127 (2004)   DOI   ScienceOn
23 G. S. Liou and S.-H. Hsiano, Macromol. Chem. Phys., 201, 42 (2000)   DOI   ScienceOn
24 S.-H. Hsiao and L. R. Dai, J. Polym. Sci.; Part A : Polym. Chem., 37, 2129 (1998)   DOI   ScienceOn
25 D. S. Yoon, J. K Choi, and B. W. Jo, Polymer(Korea), 29, 493 (2005)
26 K. Mequanint, R. Sanderson, and H. Pasch, Polym. Degrad. Stab., 77, 121 (2002)   DOI   ScienceOn
27 M. E. Hunsaker, G. E. Price, and S. J. Bai, Polymer, 33, 2128 (1992)   DOI   ScienceOn