• 제목/요약/키워드: Activation Properties

검색결과 1,477건 처리시간 0.032초

Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향 (Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons)

  • 이지한;허건영;박수진
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.739-744
    • /
    • 2012
  • 본 연구에서는 합성한 styrene-acrylonitrile(SAN) 전구체를 기반으로 한 탄소를 제조하였다. 그 제조된 탄소는 화학적 환원법으로 활성화하였고, 그 활성화된 SAN 기반 탄소를 A-SAN이라 명명하였다. 전기이중층 커패시터의 전극용 A-SAN 기반 탄소의 표면 특성과 전기화학적 특성에 있어서 활성화 온도에 의한 효과를 확인하기 위해 다양한 온도에서 활성화를 진행하였다. A-SAN의 특성분석을 위해 X-선 회절분석법(XRD), 주사전자현미경(SEM) 그리고 비표면적 장치에 의해 조사되었다. 또한 전기화학적 거동은 순환전류전압과 정전류 충방전법으로 측정하였다. 그 실험 결과로부터, A-SAN 700이 우수한 전기화학적 특성과 가장 높은 비축전용량 값을 보였지만, 활성화 온도가 $700^{\circ}C$가 넘으면 이러한 특성들은 감소했다. 이것은 $700^{\circ}C$ 이상의 온도에서의 활성화가 마이크로 기공 구조의 변형을 야기하기 때문인 것으로 사료된다.

불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성 (Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins)

  • 박수진;김범용;이재락;신재섭
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.176-182
    • /
    • 2003
  • 피리딘을 촉매로 사용하여 2-chloro-$\alpha$,$\alpha$,$\alpha$-trifluorotoluene과 glycerol diglycidyl ether를 반응시켜 불소함유 에폭시 수지인 2-trifluorotoluene diglycidylether (FER)을 합성하였다. FER/DM 시스템의 격화 거동은 동적 DSC와 등온 DSC 열분식을 통하여 알아보았으며, Flynn-Wall-Ozawa식을 사용하여 경화 활성화 에너지 (Ea)를 계산하였다. 또한, 본 시스템의 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 고찰하였으며, Arrhenius식을 사용하여 젤화 시간과 경화 온도에 의해 가교 활성화 에너지 (Ec)를 구하였다. 실험 결과, FT-IR, $^{13}$C NMR, 그리고 $^{19}$ F NMR 분광법 분석을 통하여 합성한 수지의 화학 구조를 확인하였으며, FER/DDM 시스템의 Ea는 53.4 kJ/mol이었으며, 경화 반응의 전환율과 전환 속도는 경화 온도가 높을수록 높은 값을 나타내었다. 시스템의 Ec는 41.6 kJ/mol이었으며, 경화 온도가 높을수록 젤화 시간이 단축되었다.

4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구 (Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • 폴리머
    • /
    • 제26권6호
    • /
    • pp.767-777
    • /
    • 2002
  • 본 실험에서는 4관능성 에폭시 수지 (4EP)와 생분해성 modified aliphatic polyester (MAP) 블렌드의 경화 거동, 열안전성, 유변학적 특성, 그리고 기계적 특성을 살펴보았다. DSC 측정 결과, 경화 활성화 에너지 ( $E_{a}$ )는 4EP에 대한 MAP의 비율이 10 wt%로 증가함에 따라 증가하였다. 이는 4EP와 MAP 사이의 분자상호작용이 증가하였기 때문으로 사료된다. 열안정성과 관련있는 분해 활성화 에너지 ( $E_{t}$ )는 Coats-Redfern 방법을 이용하여 구하였으며 MAP의 함량비가 10에서 30 wt% 내에서 증가하였다. 이는 블렌드 시스템에서의 가교 밀도의 증가 때문으로 사료된다. 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 검토하였고, 겔화 시간과 경화 온도를 이용한 Arrhenius 방정식을 적용하여 가교 활성화 에너지 ( $E_{c}$ )를 검토한 결과, $E_{a}$ 와 유사한 경향을 나타내었다. 기계적 계면특성인 파괴인성 ( $K_{IC}$ )은 시편의 semi-IPN구조 거동으로 고찰하였다.

Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550℃

  • Wang, Wei;Liu, Shaojun;Xu, Gang;Zhang, Baoren;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.518-524
    • /
    • 2016
  • The thermal aging effects on mechanical properties and microstructures in China low-activation martensitic steel have been tested by aging at $550^{\circ}C$ for 2,000 hours, 4,000 hours, and 10,000 hours. The microstructure was analyzed by scanning and transmission electron microscopy. The results showed that the grain size and martensitic lath increased by about $4{\mu}m$ and $0.3{\mu}m$, respectively, after thermal exposure at $550^{\circ}C$ for 10,000 hours. MX type particles such as TaC precipitated on the matrix and Laves-phase was found on the martensitic lath boundary and grain boundary on aged specimens. The mechanical properties were investigated with tensile and Charpy impact tests. Tensile properties were not seriously affected by aging. Neither yield strength nor ultimate tensile strength changed significantly. However, the ductile-brittle transition temperature of China low-activation martensitic steel increased by $46^{\circ}C$ after aging for 10,000 hours due to precipitation and grain coarsening.

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

Improvement of gas sensing properties of carbon nanofibers based on polyacrylonitrile and pitch by steam activation

  • Kim, Jeongsik;Kim, Hyung-Il;Yun, Jumi
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.36-40
    • /
    • 2017
  • Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at $800^{\circ}C$ had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.

핵융합로 블랭킷용 저방사화 철강재료 TIG 용접부의 강도특성 (Strength Characteristics of Reduced Activation Ferritic Steel for Fusion Blanket by TIG Welding)

  • 윤한기;이상필;김동현
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.87-92
    • /
    • 2003
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), reduced activation ferritic steel, is one of the promising candidate materials for fusion reactor applications. Tensile properties of JLF-1 base metal and its TIG weldments has been investigated at the room temperature, $400^{\circ}C$ and $600^{\circ}C$. The tensile strength of base metal (JLF-1) showed the level between those of weld metal and the Heat Affected Zone (HAZ). When the test temperature was increased from room temperature to high temperature ($400^{\circ}C$ and $600^{\circ}C$), both strength and ductility decreased or base metal, weld metal and the HAZ. The longitudinal specimens of base metal represented similar strength and ductility at room temperature and high temperature, compared to those of transverse specimens. Little anisotropy for the rolling direction was observed in the base metal of JLF-1 steel.

Morphologies and surface properties of cellulose-based activated carbon nanoplates

  • Lee, Seulbee;Lee, Min Eui;Song, Min Yeong;Cho, Se Youn;Yun, Young Soo;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.32-38
    • /
    • 2016
  • In this study, cellulose nanoplates (CNPs) were fabricated using cellulose nanocrystals obtained from commercial microcrystalline cellulose (MCC). Their pyrolysis behavior and the characteristics of the product carbonaceous materials were investigated. CNPs showed a relatively high char yield when compared with MCC due to sulfate functional groups introduced during the manufacturing process. In addition, pyrolyzed CNPs (CCNPs) showed more effective chemical activation behavior compared with MCC-induced carbonaceous materials. The activated CCNPs exhibited a microporous carbon structure with a high surface area of 1310.6 m2/g and numerous oxygen heteroatoms. The results of this study show the effects of morphology and the surface properties of cellulose-based nanomaterials on pyrolysis and the activation process.

Application of the Arrhenius Equation in Geotechnical Engineering

  • Yoon, Hyung-Koo
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.575-581
    • /
    • 2014
  • The reliable measurement of geotechnical properties in cold regions should account for their fluctuations with temperature. The objective of this paper is to introduce a chemical model based on the Arrhenius equation that can predict the properties of materials as their temperature changes. The model can monitor phases and reaction rates as they change with temperature. It has been already applied in the fields of geology, construction, chemistry, materials engineering, and food science. The application of the Arrhenius equation requires a reliable estimate of the activation energy. Therefore, this study also demonstrates several methods for evaluating activation energy in different contexts through summaries and reviews of previous research related to the Arrhenius equation. This paper may be of wide use in obtaining temperature-dependent parameters in geotechnical engineering.

ZnCl2를 이용하여 폐감귤박으로부터 활성탄 제조 (Preparation of Activated Carbon from Waste Citrus Peels by ZnCl2)

  • 강경호;감상규;이민규
    • 한국환경과학회지
    • /
    • 제16권9호
    • /
    • pp.1091-1098
    • /
    • 2007
  • Activated carbon was prepared from waste citrus peels by chemical activation with $ZnCl_2$. The optimal condition of carbonization was at $300^{\circ}C$ for 1.5 hr. Activation experiments with carbonized samples prepared at optimal carboniztion condition were carried out under various conditions such as activation temperature of 400 to $900^{\circ}C$, activation time of 0.5 to 2.0 hr, and $ZnCl_2$ ratio of 100 to 300%. In order to investigate the physical properties of the activated carbons prepared, iodine adsorptivities and specific surface areas were measured and their morphologies were observed from scanning electron microscopy. As $ZnCl_2$ ratio increased, activation yield decreased, while iodine adsorptivity and specific surface area increased. The optimal condition of activation was at 300% $ZnCl_2$ ratio and $300^{\circ}C$ for 1.5 hr, and then iodine adsorptivity and specific surface area was measured as about 862 mg/g and $756m^2/g$, respectively. SEM photography showed that the surface morphology was changed and many active pore were produced by chemical activation.