DOI QR코드

DOI QR Code

Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550℃

  • Wang, Wei (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Liu, Shaojun (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Xu, Gang (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Zhang, Baoren (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Huang, Qunying (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
  • Received : 2015.06.11
  • Accepted : 2015.11.09
  • Published : 2016.04.25

Abstract

The thermal aging effects on mechanical properties and microstructures in China low-activation martensitic steel have been tested by aging at $550^{\circ}C$ for 2,000 hours, 4,000 hours, and 10,000 hours. The microstructure was analyzed by scanning and transmission electron microscopy. The results showed that the grain size and martensitic lath increased by about $4{\mu}m$ and $0.3{\mu}m$, respectively, after thermal exposure at $550^{\circ}C$ for 10,000 hours. MX type particles such as TaC precipitated on the matrix and Laves-phase was found on the martensitic lath boundary and grain boundary on aged specimens. The mechanical properties were investigated with tensile and Charpy impact tests. Tensile properties were not seriously affected by aging. Neither yield strength nor ultimate tensile strength changed significantly. However, the ductile-brittle transition temperature of China low-activation martensitic steel increased by $46^{\circ}C$ after aging for 10,000 hours due to precipitation and grain coarsening.

Keywords

References

  1. R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.A.F. Tavassoli, C. Cayron, A.M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODSEUROFER for application in blanket concepts, Fusion Eng. Design 75-79 (2005) 989-996. https://doi.org/10.1016/j.fusengdes.2005.06.186
  2. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A.A.F. Tavassoli, T. Yamamoto, F. Wan, Y. Wu, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater. 442 (2013) S2-S8. https://doi.org/10.1016/j.jnucmat.2012.12.039
  3. Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao, Progress in development of China low activation martensitic steel for fusion application, J. Nucl. Mater. 367-370 (2007) 142-146. https://doi.org/10.1016/j.jnucmat.2007.03.153
  4. Q. Huang, C. Li, Q. Wu, S. Liu, S. Gao, Z. Guo, Z. Yan, B. Huang, Y. Song, Z. Zhu, Y. Chen, X. Ling, Y. Wu, FDS Team, Progress in development of CLAM steel and fabrication of small TBM in China, J. Nucl. Mater. 417 (2011) 85-88. https://doi.org/10.1016/j.jnucmat.2010.12.170
  5. Q. Huang, Y. Wu, J. Li, F.R. Wan, J.L. Chen, G.N. Luo, X. Liu, J.M. Chen, Z.Y. Xu, X.G. Zhou, X. Ju, Y.Y. Shan, J.N. Yu, S.Y. Zhu, P.Y. Zhang, J.F. Yang, X.J. Chen, S.M. Dong, Status and strategy of fusion materials development in China, J. Nucl. Mater. 386-388 (2009) 400-404. https://doi.org/10.1016/j.jnucmat.2008.12.158
  6. Q. Huang, FDS Team, Development status of CLAM steel for fusion application, J. Nucl. Mater. 445 (2014) 649-654.
  7. Q. Huang, Q. Wu, C. Li, S. Liu, B. Huang, Progress in development of Fabrication of small TBMs for EAST and ITER, Fusion Eng. Design 85 (2010) 2192-2195. https://doi.org/10.1016/j.fusengdes.2010.08.028
  8. Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Nagasaka, T. Muroga, Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1, J. Nucl. Mater. 367-370 (2007) 117-121. https://doi.org/10.1016/j.jnucmat.2007.03.012
  9. Q. Huang, S. Gao, Z. Zhu, M. Zhang, Y. Song, C. Li, Y. Chen, X. Ling, X. Zhou, Progress in compatibility experiments on lithium-lead with candidate structural materials for fusion in China, Fusion Eng. Design 84 (2009) 242-246. https://doi.org/10.1016/j.fusengdes.2008.12.038
  10. Y. Wu, Q. Huang, Z. Zhu, S. Gao, Y. Song, R&D of DRAGON series lithium lead loops for material and blanket technology testing, Fusion Eng. Design 62-1 (2012) 272-275.
  11. Y. Li, T. Nagasaka, T. Muroga, Long-term thermal stability of reduced activation ferritic/martensitic steels as structural materials of fusion blanket, Plasma Fusion Res. 5 (2010) S1036-S1039. https://doi.org/10.1585/pfr.5.S1036
  12. S. Gao, Q. Huang, Z. Zhu, Z. Guo, X. Ling, Y. Chen, Corrosion behavior of CLAM steel in static and flowing LiPb at $480^{\circ}C$ and $500^{\circ}C$, Fusion Eng. Design 86 (2011) 2627-2631. https://doi.org/10.1016/j.fusengdes.2011.03.061
  13. C. Li, Q. Huang, Q. Wu, S. Liu, Y. Lei, T. Muroga, T. Nagasaka, J. Zhang, J. Li, Welding techniques development of CLAM steel for test blanket module, Fusion Eng. Design 84 (2009) 1184-1187. https://doi.org/10.1016/j.fusengdes.2008.12.039
  14. Q. Huang, J. Li, Y. Chen, Study of irradiation effects in China low activation martensitic steel CLAM, J. Nucl. Mater. 329 (2004) 268-272.
  15. Y. Wu, FDS Team, Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST, Nucl. Fusion 47-11 (2007) 1533-1539. https://doi.org/10.1088/0029-5515/47/11/015
  16. Y. Wu, FDS Team, Design analysis of the china dualfunctional lithium lead (DFLL) test blanket module in ITER, Fusion Eng. Design 82 (2007) 1893-1903. https://doi.org/10.1016/j.fusengdes.2007.08.012
  17. H. Hadraba, I. Dlouhy, Effect of thermal ageing on the impact fracture behavior of Eurofer'97 Steel, J. Nucl. Mater. 386-388 (2009) 564-568. https://doi.org/10.1016/j.jnucmat.2008.12.319
  18. K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, S. Jitsukawa, Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system, Fusion Eng. Design 86 (2011) 2895-2899. https://doi.org/10.1016/j.fusengdes.2011.06.005
  19. H. Cerjak, P. Hofer, B. Schaffernak, The influence of microstructural aspects on the service behavior of advanced power plant steel, ISIJ Int. 39 (1999) 874-888. https://doi.org/10.2355/isijinternational.39.874
  20. C. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, J. Besson, Study of the microstructure of the grade 91 steel after more than 100,000 h of creep exposure at $600^{\circ}C$, Int. J. Pressure Vessels Piping 87-6 (2010) 326-335. https://doi.org/10.1016/j.ijpvp.2010.03.017
  21. X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, K. Yang, Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging, Mater. Sci. Eng. A 586 (2013) 253-258. https://doi.org/10.1016/j.msea.2013.08.025
  22. F. Abe, S. Nakazawa, H. Araki, T. Noda, The role of microstructural instability on creep behavior of a martensitic 9Cr-2W steel, Metallurgical Trans. A 23 (1992) 469-477. https://doi.org/10.1007/BF02801164
  23. M. Tamura, K. Shinozuka, H. Esaka, S. Sugimoto, K. Ishizawa, K. Masamura, Mechanical properties of 8Cr-2WVTa Steel Aged for 30000 h, J. Nucl. Mater. 283-287 (2000) 667-671. https://doi.org/10.1016/S0022-3115(00)00138-0
  24. G. Hu, X. Cai, Y. Rong, Foundation of Materials Science, second ed., Shanghai Jiao Tong University Press, Shanghai, 2006.
  25. A. Chatterjee, D. Chakrabarti, A. Mitra, R. Mitra, A.K. Bhaduri, Effect of normalization temperature on ductile-brittle transition temperature of a modified 9Cr-1Mo steel, Mater. Sci. Engin. A 618 (2014) 219-231. https://doi.org/10.1016/j.msea.2014.09.021
  26. M. Zhao, T. Zeng, J. Li, H. Xiaofang, Y.C. Zhao, A. Atrens, Identification of the effective grain size responsible for the ductile to brittle transition temperature for steel with an ultrafine grain size ferrite/cementite microstructure with a bimodal ferrite grain size distribution, Mater. Sci. Engin. A 528 (2011) 4217-4221. https://doi.org/10.1016/j.msea.2011.02.027
  27. A. Ghosh, A. Ray, D. Chakrabarti, C.L. Davis, Cleavage initiation in steel: competition between large grains and large particles, Mater. Sci. Engin. A 561 (2013) 126-135. https://doi.org/10.1016/j.msea.2012.11.019

Cited by

  1. Microstructural evolution of CLAM steel under 3.5MeV Fe13+ ion irradiation vol.109, pp.1, 2016, https://doi.org/10.1016/j.fusengdes.2016.01.025
  2. Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel vol.49, pp.3, 2017, https://doi.org/10.1016/j.net.2016.10.006
  3. Status and improvement of CLAM for nuclear application vol.57, pp.8, 2016, https://doi.org/10.1088/1741-4326/aa763f
  4. Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment vol.49, pp.8, 2016, https://doi.org/10.1016/j.net.2017.08.021
  5. Microstructure evolution and toughness degeneration of 9Cr martensitic steel after aging at 550 °C for 20000 h vol.53, pp.6, 2016, https://doi.org/10.1007/s10853-017-1868-x
  6. Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel vol.50, pp.1, 2016, https://doi.org/10.1016/j.net.2017.10.012
  7. On study of effect of varying tempering temperature and notch geometry on fracture surface morphology of P911 (9Cr-1Mo-1W-V-Nb) steel vol.85, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2017.12.013
  8. Simulation of impact toughness with the effect of temperature and irradiation in steels vol.51, pp.1, 2016, https://doi.org/10.1016/j.net.2018.08.016
  9. Evolution of Impact Properties of 16MND5 Forgings for Nuclear Reactor Pressure Vessel during Thermal Aging at 500°C vol.795, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.795.54
  10. Effects of Yttrium on Microstructure Stability and Tensile Properties of China Low Activation Martensitic Steel vol.9, pp.4, 2016, https://doi.org/10.3390/met9040446
  11. Effect of Laves Phase on Ductile-Brittle Transition of 12 Pct Cr Steel vol.50, pp.8, 2016, https://doi.org/10.1007/s11661-019-05269-y
  12. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C vol.13, pp.1, 2016, https://doi.org/10.3390/ma13010154
  13. Deuterium Gas-Driven Permeation and Retention Through Tungsten-Coated CLAM Steel vol.76, pp.2, 2020, https://doi.org/10.1080/15361055.2019.1693192
  14. Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels vol.52, pp.5, 2020, https://doi.org/10.1016/j.net.2019.10.014
  15. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging vol.33, pp.6, 2016, https://doi.org/10.1007/s40195-020-01011-5
  16. Effect of Heat Treatments on Microstructural Evolution and Tensile Properties of 15Cr12MoVWN Ferritic/Martensitic Steel vol.10, pp.9, 2016, https://doi.org/10.3390/met10091271
  17. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties vol.56, pp.9, 2016, https://doi.org/10.1007/s10853-020-05509-2
  18. Temperature- and time-dependent behavior of Z2CN18.10 stainless steel under uniaxial loading vol.25, pp.4, 2021, https://doi.org/10.1007/s11043-020-09471-z