DOI QR코드

DOI QR Code

Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons

Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향

  • Received : 2012.05.29
  • Accepted : 2012.07.06
  • Published : 2012.11.25

Abstract

In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above $700^{\circ}C$. This is due to the fact that the activation at a temperature over $700^{\circ}C$ causes deformation of micropore structures.

본 연구에서는 합성한 styrene-acrylonitrile(SAN) 전구체를 기반으로 한 탄소를 제조하였다. 그 제조된 탄소는 화학적 환원법으로 활성화하였고, 그 활성화된 SAN 기반 탄소를 A-SAN이라 명명하였다. 전기이중층 커패시터의 전극용 A-SAN 기반 탄소의 표면 특성과 전기화학적 특성에 있어서 활성화 온도에 의한 효과를 확인하기 위해 다양한 온도에서 활성화를 진행하였다. A-SAN의 특성분석을 위해 X-선 회절분석법(XRD), 주사전자현미경(SEM) 그리고 비표면적 장치에 의해 조사되었다. 또한 전기화학적 거동은 순환전류전압과 정전류 충방전법으로 측정하였다. 그 실험 결과로부터, A-SAN 700이 우수한 전기화학적 특성과 가장 높은 비축전용량 값을 보였지만, 활성화 온도가 $700^{\circ}C$가 넘으면 이러한 특성들은 감소했다. 이것은 $700^{\circ}C$ 이상의 온도에서의 활성화가 마이크로 기공 구조의 변형을 야기하기 때문인 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. R. Miller and P. Simon, Science, 321, 651 (2008). https://doi.org/10.1126/science.1158736
  2. B. Xu, F. Wu, Y. Su, G. Cao, S. Chen, Z. Zhou, and Y. Yang, Electrochim. Acta, 53, 7730 (2008). https://doi.org/10.1016/j.electacta.2008.05.033
  3. S. Zhao, C. Y. Wang, M. M. Chen, J. Wang, and Z. Q. Shi, J. Phys. Chem. Solids, 70, 1256 (2009). https://doi.org/10.1016/j.jpcs.2009.07.004
  4. S. J. Han, Y. H. Kim, K. S. Kim, and S. J. Park, Curr. Appl. Phys., 12, 1039 (2012). https://doi.org/10.1016/j.cap.2012.01.004
  5. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  6. H. Q. Li, R. L. Liu, D. Y. Zhao, and Y. Y. Xia, Carbon, 45, 2628 (2007). https://doi.org/10.1016/j.carbon.2007.08.005
  7. M. Sevilla, S. A' lvarez, T. A. Centeno, A. B. Fuertes, and F. Stoeckli, Electrochim. Acta, 52, 3207 (2007). https://doi.org/10.1016/j.electacta.2006.09.063
  8. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, and Y. Yang, Electrochim. Acta, 52, 4595 (2007). https://doi.org/10.1016/j.electacta.2007.01.006
  9. K. S. Kim and S. J. Park, Carbon Lett., 13, 51 (2012). https://doi.org/10.5714/CL.2012.13.1.051
  10. K. C. Roh, J. B. Park, C. T. Lee, and C. W. Park, J. Ind. Eng. Chem., 14, 2 (2008).
  11. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science, 313, 1760 (2006). https://doi.org/10.1126/science.1132195
  12. B. Fang and L. Binder, Electrochim. Acta, 52, 6916 (2007). https://doi.org/10.1016/j.electacta.2007.05.004
  13. M. K. Seo and S. J. Park, Curr. Appl. Phys., 10, 241 (2010). https://doi.org/10.1016/j.cap.2009.05.031
  14. M. K. Seo and S. J. Park, Mater. Sci. Eng., B 164, 106 (2009).
  15. H. Zheng and M. S. Kim, Carbon Lett., 12, 243 (2011). https://doi.org/10.5714/CL.2011.12.4.243
  16. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, J. Power Sources, 195, 2118 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.077
  17. M. S. Balathanigaimani, W. G. Shim, M. J. Lee, C. Kim, J. W. Lee, and H. Moon, Electrochem. Commun., 10, 868 (2008). https://doi.org/10.1016/j.elecom.2008.04.003
  18. S. J. Park and W. Y. Jung, Carbon, 40, 2021 (2002). https://doi.org/10.1016/S0008-6223(02)00040-4
  19. A. Janes and E. Lust, J. Electrochem. Soc., 153, A113 (2006). https://doi.org/10.1149/1.2135212
  20. J. I. Kim, I. J. Kim, and S. J. Park, J. Kor. Chem. Soc., 54, 93 (2010). https://doi.org/10.5012/jkcs.2010.54.01.093
  21. B. J. Kim and S. J. Park, Polymer(Korea), 35, 35 (2011).
  22. T. Kawano, M. Kubota, M. S. Onyango, F. Watanabe, and H. Matsuda, Appl. Therm. Eng., 28, 865 (2008). https://doi.org/10.1016/j.applthermaleng.2007.07.009
  23. H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, Fuel, 83, 2427 (2004). https://doi.org/10.1016/j.fuel.2004.06.019
  24. S. J. Park, S. Y. Jin, and J. Kawasaki, J. Kor. Ind. Eng. Chem., 14, 8 (2003).
  25. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 1982.
  26. J. I. Kim, K. Y. Rhee, and S. J. Park, J. Colloid Interface Sci., 377, 307 (2012). https://doi.org/10.1016/j.jcis.2012.02.050
  27. S. Blazewicz, A. Swiatkowski, and B. J. Trznadel, Carbon, 37, 693 (1999). https://doi.org/10.1016/S0008-6223(98)00246-2