Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins

불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김범용 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 신재섭 (충북대학교 화학과)
  • Published : 2003.05.01

Abstract

The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-${\alpha}$,${\alpha}$,${\alpha}$-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, $\^$13/C NMR, and $\^$19/F NMR spectroscopy. The cure activation energy of FER/DDM system was 55.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

피리딘을 촉매로 사용하여 2-chloro-$\alpha$,$\alpha$,$\alpha$-trifluorotoluene과 glycerol diglycidyl ether를 반응시켜 불소함유 에폭시 수지인 2-trifluorotoluene diglycidylether (FER)을 합성하였다. FER/DM 시스템의 격화 거동은 동적 DSC와 등온 DSC 열분식을 통하여 알아보았으며, Flynn-Wall-Ozawa식을 사용하여 경화 활성화 에너지 (Ea)를 계산하였다. 또한, 본 시스템의 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 고찰하였으며, Arrhenius식을 사용하여 젤화 시간과 경화 온도에 의해 가교 활성화 에너지 (Ec)를 구하였다. 실험 결과, FT-IR, $^{13}$C NMR, 그리고 $^{19}$ F NMR 분광법 분석을 통하여 합성한 수지의 화학 구조를 확인하였으며, FER/DDM 시스템의 Ea는 53.4 kJ/mol이었으며, 경화 반응의 전환율과 전환 속도는 경화 온도가 높을수록 높은 값을 나타내었다. 시스템의 Ec는 41.6 kJ/mol이었으며, 경화 온도가 높을수록 젤화 시간이 단축되었다.

Keywords

References

  1. Development and Application of New Reactive Monomers T.Endo
  2. Polymeric Materials and Processing: Plastics, Elastomers and Composites J.M.Charrier
  3. Industrial Polymers Handbook: Products, Processes, Applications E.S.Wilks
  4. J. Appl. Polym. Sci. v.75 R.Bongiovanni;G.Malucelli;M.Messori;F.Pilati;A.Priola;C.Tonelli;M.Toselli https://doi.org/10.1002/(SICI)1097-4628(20000131)75:5<651::AID-APP7>3.0.CO;2-P
  5. Dent. Mater. v.15 J.W.Stansbury;J.M.Antonucci https://doi.org/10.1016/S0109-5641(99)00028-7
  6. Macromol. Mater. Eng. v.283 E.Hamciuc;C.Hamciuc;I.Sava;M.Sava;M.Bruma https://doi.org/10.1002/1439-2054(20001101)283:1<36::AID-MAME36>3.0.CO;2-8
  7. J. Polym. Sci., Part A: Polym. Chem. v.39 P.K.Gutch;S.Banerjee;D.C.Gupta;D.K.Jaiswal https://doi.org/10.1002/1099-0518(20010201)39:3<383::AID-POLA1005>3.0.CO;2-3
  8. J. Polym. Sci., Part A: Polym.Chem. v.38 Y.Saegusa;T.Sakai https://doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1873::AID-POLA750>3.0.CO;2-9
  9. J. Polym. Sci., Part A: Polym. Chem. v.39 Y.Saegusa;M.Horikiri;D.Sakai;S.Nakamura
  10. J. Polym. Sci., Part A: Polym. Chem. v.39 K.Xie;S.Y.Zhang;J.G.Liu;M.H.He;S.Y.Yang https://doi.org/10.1002/pola.1235
  11. J. Polym. Sci., Part A: Polym. Chem. v.40 J.G.Liu;M.H.He;Z.X.Li;Z.G.Qian;F.S.Wang;S.Y.Yang https://doi.org/10.1002/pola.10240
  12. J. Appl. Polym. Sci. v.63 R.Bongiovanni;G.Malucelli;A.Pollicino;A.Priola https://doi.org/10.1002/(SICI)1097-4628(19970222)63:8<979::AID-APP3>3.0.CO;2-P
  13. J. Polym. Sci., Part A: Polym.Chem v.39 V.Castelvetro;L.Montagnini;Mirabello,M.Aglietto;E.Passaglia https://doi.org/10.1002/1099-0518(20010101)39:1<32::AID-POLA40>3.0.CO;2-5
  14. Magn. Reson. Chem v.35 A.A.Ribeiro https://doi.org/10.1002/(SICI)1097-458X(199704)35:4<215::AID-OMR62>3.0.CO;2-W
  15. Bull. Chem. Soc. Jpn v.38 Ozawa,T https://doi.org/10.1246/bcsj.38.1881
  16. Polym.Eng.Sci v.27 H.H.Winter https://doi.org/10.1002/pen.760272209
  17. Anal. Chem v.60 D.N.Watersl;J.L.Paddy https://doi.org/10.1021/ac00152a014
  18. J.Polym.Sci,Part A:Polym.Chem v.38 S.J.Park,M.K.Seo;J.R.Lee https://doi.org/10.1002/1099-0518(20000815)38:16<2945::AID-POLA120>3.0.CO;2-6
  19. J. Polym. Sci, Part A: Polym.Chem v.39 S.J.Park.M.K.Seo,J.R.Lee;D.R.Lee https://doi.org/10.1002/1099-0488(20010101)39:1<184::AID-POLB170>3.0.CO;2-X
  20. J. Appl. Polym. Sci v.47 P.A.Oyanguren;R.J.Williams https://doi.org/10.1002/app.1993.070470806
  21. J. Polym. Sci v.20 T.Takahama; P.H.Geil
  22. J. Polym. Sci, Part B: Polym. Phys v.38 S.J.Park;T.J.kim;J.R.Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8