Browse > Article
http://dx.doi.org/10.5714/CL.2016.20.032

Morphologies and surface properties of cellulose-based activated carbon nanoplates  

Lee, Seulbee (Department of Polymer Science and Engineering, Inha University)
Lee, Min Eui (Department of Polymer Science and Engineering, Inha University)
Song, Min Yeong (Department of Polymer Science and Engineering, Inha University)
Cho, Se Youn (Department of Polymer Science and Engineering, Inha University)
Yun, Young Soo (Department of Chemical Engineering, Kangwon National University)
Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
Publication Information
Carbon letters / v.20, no., 2016 , pp. 32-38 More about this Journal
Abstract
In this study, cellulose nanoplates (CNPs) were fabricated using cellulose nanocrystals obtained from commercial microcrystalline cellulose (MCC). Their pyrolysis behavior and the characteristics of the product carbonaceous materials were investigated. CNPs showed a relatively high char yield when compared with MCC due to sulfate functional groups introduced during the manufacturing process. In addition, pyrolyzed CNPs (CCNPs) showed more effective chemical activation behavior compared with MCC-induced carbonaceous materials. The activated CCNPs exhibited a microporous carbon structure with a high surface area of 1310.6 m2/g and numerous oxygen heteroatoms. The results of this study show the effects of morphology and the surface properties of cellulose-based nanomaterials on pyrolysis and the activation process.
Keywords
cellulose nanocrystals; carbon nanoplates; carbonization; activation; activated carbon;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Peres NMR, Guinea F, Neto AHC. Electronic properties of disordered two-dimensional carbon. Phys Rev B, 73, 125411 (2006). http://dx.doi.org/10.1103/physrevb.73.125411.   DOI
2 Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources, 157, 11 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.02.065.   DOI
3 Zhu J, Yang D, Yin Z, Yan Q, Zhang H. Graphene and graphene-based materials for energy storage applications. Small, 10, 3480 (2014). http://dx.doi.org/10.1002/smll.201303202.   DOI
4 Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater, 25, 1993 (2013). http://dx.doi.org/10.1002/adma.201204692.   DOI
5 Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S, Kim BH, Kim YH, Kang K, Jin HJ. Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J Power Sources, 262, 79 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.03.084.   DOI
6 Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. J Mater Chem A, 1, 4490 (2013). http://dx.doi.org/10.1039/C3TA00004D.   DOI
7 Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew Chem, 126, 1596 (2014). http://dx.doi.org/10.1002/ange.201307319.   DOI
8 Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces, 7, 3684 (2015). http://dx.doi.org/10.1021/am5081919.   DOI
9 Hornyak GL, Dutta J, Tibbals HF, Rao A. Introduction to Nanoscience, CRC Press, Boca Raton, (2008).
10 Huang X. Fabrication and properties of carbon fibers. Materials, 2, 2369 (2009). http://dx.doi.org/10.3390/ma2042369.   DOI
11 Dumanlı AG, Windle AH. Carbon fibres from cellulosic precursors: a review. J Mater Sci, 47, 4236 (2012). http://dx.doi.org/10.1007/s10853-011-6081-8.   DOI
12 White RJ. The Search for Functional Porous Carbons from Sustainable Precursors. In: White RJ, ed. Porous Carbon Materials from Sustainable Precursors, RSC Green Chemistry Vol. 32, Royal Society of Chemistry, Cambridge, 3 (2015). http://dx.doi.org/10.1039/9781782622277-00003.
13 Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 1, 552 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.05.002.   DOI
14 Bai W, Holbery J, Li K. A technique for production of nanocrystal-line cellulose with a narrow size distribution. Cellulose, 16, 455 (2009). http://dx.doi.org/10.1007/s10570-009-9277-1.   DOI
15 Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev, 40, 3941 (2011). http://dx.doi.org/10.1039/c0cs00108b.   DOI
16 Cho SY, Park HH, Yun YS, Jin HJ. Cellulose nanowhisker-incorporated poly(lactic acid) composites for high thermal stability. Fibers Polym, 14, 1001 (2013). http://dx.doi.org/10.1007/s12221-013-1001-y.   DOI
17 Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules, 11, 674 (2010). http://dx.doi.org/10.1021/bm901254n.   DOI
18 Sanchez-Garcia MD, Lagaron JM. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose, 17, 987 (2010). http://dx.doi.org/10.1007/s10570-010-9430-x.   DOI
19 Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules, 44, 4422 (2011). http://dx.doi.org/10.1021/ma200318k.   DOI
20 Liu H, Liu D, Yao F, Wu Q. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol, 101, 5685 (2010). http://dx.doi.org/10.1016/j.biortech.2010.02.045.   DOI
21 Dash R, Li Y, Ragauskas AJ. Cellulose nanowhisker foams by freeze casting. Carbohydr Polym, 88, 789 (2012). http://dx.doi.org/10.1016/j.carbpol.2011.12.035.   DOI
22 Han J, Zhou C, Wu Y, Liu F, Wu Q. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules, 14, 1529 (2013). http://dx.doi.org/10.1021/bm4001734.   DOI
23 Peng Y, Gardner DJ, Han Y. Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19, 91 (2012). http://dx.doi.org/10.1007/s10570-011-9630-z.   DOI
24 Jenkins GM, Kawamura K. Polymeric Carbons-Carbon Fibre, Glass and Char, Cambridge University Press, New York (1976).
25 Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781 (2007). http://dx.doi.org/10.1016/j.fuel.2006.12.013.   DOI
26 Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J, 44, 2489 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2008.05.024.   DOI
27 Cho SY, Yun YS, Jin H. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol Res, 22, 753 (2014). http://dx.doi.org/10.1007/s13233-014-2094-x.   DOI
28 Deville S. Ice-templating, freeze casting: beyond materials processing. J Mater Res, 28, 2202 (2013). http://dx.doi.org/10.1557/jmr.2013.105.   DOI
29 Li W, Yue J, Liu S. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem, 19, 479 (2012). http://dx.doi.org/10.1016/j.ultsonch.2011.11.007.   DOI
30 Lu P, Hsieh YL. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym, 82, 329 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.04.073.   DOI
31 Li W, Wang R, Liu S. Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. Bioresources, 6, 4271 (2011).
32 Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13, 171 (2006). http://dx.doi.org/10.1007/s10570-006-9061-4.   DOI
33 Rosli NA, Ahmad I, Abdullah I. Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. Bioresources, 8, 1893 (2013).
34 Zhang H, Zhu L, Sun R. Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions. J Eng Fiber Fabr, 9, 67 (2014).
35 Reich S, Thomsen C. Raman spectroscopy of graphite. Phil Trans R Soc Lond A, 362, 2271 (2004). http://dx.doi.org/10.1098/rsta.2004.1454.   DOI
36 Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.052.   DOI
37 Rhim YR, Zhang D, Fairbrother DH, Wepasnick KA, Livi KJ, Bodnar RJ, Nagle DC. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 48, 1012 (2010). http://dx.doi.org/10.1016/j.carbon.2009.11.020.   DOI
38 Lee D, Cho S, Kim Y, Lee YS. Influence of the pore properties on carbon dioxide adsorption of PAN-based activated carbon nanofibers. Polymer (Korea), 37, 592 (2013). http://dx.doi.org/10.7317/pk.2013.37.5.592.   DOI
39 Weidenthaler C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale, 3, 792 (2011). http://dx.doi.org/10.1039/C0NR00561D.   DOI
40 Sahira J, Mandira A, Prasad PB, Ram PR. Effects of activating agents on the activated carbons prepared from lapsi seed stone. Res J Chem Sci, 3, 19 (2013).
41 Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science, 329, 1637 (2010). http://dx.doi.org/10.1126/science.1194372.   DOI