• Title/Summary/Keyword: Accumulative Displacement

Search Result 5, Processing Time 0.021 seconds

Instrumented Field Performance of an Isolated-Reinforced Earth Wall (분리형 보강토옹벽의 현장계측 및 분석)

  • 김영윤;한경제;김경모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.117-124
    • /
    • 2000
  • As the reinforced earth wall is constructed with step by step backfill compaction method, the accumulative horizontal deformation is inevitable. It has been reported that about 80% of horizontal deformation is occurred during the construction stage of reinforced earth retaining wall. To reduce the horizontal deformation, an isolated-reinforced earth wall method(KOESWall system) was newly developed. In this system, the reinforced earth is constructed first with reinforcements and backfills only, and then facing blocks are installed after the horizontal displacement of reinforced earth is fully occurred. To evaluate the effect of a construction method and the performance of KOESWall system, two cases of full scale field performance was monitored during and after the construction stages.

  • PDF

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Application of Laser Distance Measurer to measure ground surface displacement in slopes (사면의 지표변위 측정을 위한 레이저 거리측정기의 활용)

  • Cho, Yong-Chan;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • In this study, the method to measure effectively the ground surface displacement of slope was proposed using the Laser Distance Measurer (LDM). Applying the proposed technique is more simple and easier than the complicated and high-priced instrument to measure the ground surface displacement. LDM is an instrument that the red laser aimed at the target and then the reflected laser used for calculating the distance. The advantages of LDM are easy operating method, high measurement precision and lower in price. To check the feasibility, the proposed method applied to the real site that the ground surface displacement of slope was occurred continuously. The ground surface displacements were occurred in various points of the natural and cut slopes located at the lower part of coal mine waste heap due to the load of waste heap. To measure directly the ground surface displacement in this site, 6 measurement sections and 26 measurement points were selected. As the result of the displacement measured by the proposed technique within a certain period time, the accumulative ground surface displacement could be measured as well as the velocity of displacement could be estimated. Also, the progress direction of ground surface displacement can be confirmed and predicted through the analysis of all measured result.

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.