• 제목/요약/키워드: Acceleration Effect

검색결과 1,180건 처리시간 0.031초

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

차량하중에 의한 주변지반의 진동해석 (Dynamic analysis Ground using 2-D FEM)

  • 황성춘;강보순;심형섭;오병헌;박성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.642-647
    • /
    • 2001
  • Dynamic response of ground due to train loads is analyzed. A numerical procedure based on finite element method is used to solve two-dimensional ground response. Dynamic train loads assumed in analysis is the point acceleration on train rail with magnitude of 2330 gal and thickness of surface of soil layer assumed is 60cm. In order to consider the effect of acceleration point, dynamic responses such as response acceleration and displacement are computed as a function of distance from acceleration point on rail. In addition, simple methods which reduce dynamic effects on ground are also proposed.

  • PDF

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

에폭시/층상실리케이트 나노콤포지트의 주파수 가속열화에 따른 부분방전 저항성 (Partial Discharge Resistance According to Frequency Acceleration Deterioration of Epoxy/Layered Silicate Nanocomposites)

  • 박재준
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1694-1699
    • /
    • 2013
  • Frequency accelerated partial discharge resistance (PDR) aging of epoxy/layered silicate nanocomposite with 1.5wt % additions of layered silicate was investigated in comparison with that of epoxy without layered silicate in terms of PD(partial discharge) erosion depth. It was found that the change in the erosion depth is far smaller in specimens with layered silicate than those without layered silicate nano particles. Frequency acceleration can be done from 60Hz to 1000Hz. But the depth of erosion is less proportional to frequency. Acceleration factor is almost 2 times between 500Hz and 1000Hz, but it is much less than about 8.3 times between 60Hz and 500Hz. This superior PD resistance is caused by the presence of nanofillers, anano-effect due to closely packed nanofillers, and strong chemical bonds at layered silicate nanofillers /resin interfaces.

왕복운동 및 회전운동 근관성형용 전동모터 간의 진동 양상 비교 (Vibration characteristics of endodontic motors with different motion: reciprocation and conventional rotation)

  • 전영주;김진우;조경모;박세희;장훈상
    • 대한치과의사협회지
    • /
    • 제52권12호
    • /
    • pp.734-743
    • /
    • 2014
  • Objectives: By introduced reciprocation motion file in dentistry, dentists benefit simple canal shaping procedure and time-saving. But, reciprocation motion generates uncomfortable vibration to doctors and patients. Because there was no study about this consideration, this study compared vibration pattern and power generated from reciprocation motion motor and conventional rotary motor. Materials & Methods: One conventional rotary motor; X-Smart (Dentsply Maillefer, Ballaigues, Switzerland); and two reciprocating motors; WaveOne Motor (Dentsply Maillefer, Ballaigues, Switzerland) and X-SMART PLUS (Dentsply Maillefer, Ballaigues, Switzerland); were used in this study. Triaxial $ICP^{(R)}$ Accelerometer (Model 356A12, PCB piezotronics, New York, USA) was attached on motor's handpiece head, and was measured tri-axial vibratory acceleration with NI Sound and Vibration Assistant 2009 software (National Instruments, Texas, USA). Mean vibratory acceleration and maximum vibratory acceleration was measured on fixed position and handed position. The results of vibratory acceleration were statistically analyzed using ANOVA and multiple comparisons are made using Turkey's test at p<0.05 level. Results: Reciprocating motors showed higher mean vibratory acceleration and maximum vibratory acceleration than conventional rotary motor (p<0.05). Between reciprocating motors, X-SMART PLUS had lower mean vibratory acceleration and maximum vibratory acceleration than WaveOne Motor (p<0.05). Conclusion: Reciprocating motors generate more vibration than conventional rotary motor. Further study about effect of vibration to dentist and patient is needed. And it seems to be necessary to make a standard about vibration level in endodontic motors.

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

Nonlinear control of a 20-story steel building with active piezoelectric friction dampers

  • Chen, Chaoqiang;Chen, Genda
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.21-38
    • /
    • 2002
  • A control algorithm combining viscous and non-linear Reid damping mechanisms has been recently proposed by the authors to command active friction dampers. In this paper, friction dampers and the proposed algorithm are applied to control the seismic responses of a nonlinear 20-story building. Piezoelectric stack actuators are used to implement the control algorithm. The capacity of each damper is determined by the practical size of piezoelectric actuators and the availability of power supply. The saturation effect of the actuators on the building responses is investigated. To minimize the peak story drift ratio or floor acceleration of the building structure, a practical sequential procedure is developed to sub-optimally place the dampers on various floors. The effectiveness of active friction dampers and the efficiency of the proposed sequential procedure are verified by subjecting the building structure to four earthquakes of various intensities. The performance of 80 dampers and 137 dampers installed on the structure is evaluated according to 5 criteria. Numerical simulations indicated that the proposed control algorithm effectively reduces the seismic responses of the uncontrolled 20-story building, such as inelastic deformation. The sub-optimal placement of dampers based on peak acceleration outperforms that based on peak drift ratio for structures subjected to near-fault ground motions. Saturation of piezoelectric actuators has adverse effect on floor acceleration.

원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구 (Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components)

  • 김종성;박상혁
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.