DOI QR코드

DOI QR Code

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute) ;
  • Kim, Jae-Hoon (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute) ;
  • Kim, Jong-Uk (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute) ;
  • Seo, Ju-Tae (Department of Physics, Chung-Ang University) ;
  • Hahn, Sang-June (Department of Physics, Chung-Ang University)
  • Received : 2008.11.19
  • Accepted : 2009.03.09
  • Published : 2009.03.25

Abstract

The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

Keywords

References

  1. T. Tajima and J. M. Dawson, 'Laser electron accelerator,' Phys. Rev. Lett. 43, 267-270 (1979) https://doi.org/10.1103/PhysRevLett.43.267
  2. J. Krall, A. Ting, E. Esarey, and P. Sprangle, 'Enhanced acceleration in a self-modulated-laser wake-field accelerator,' Phys. Rev. E 48, 2157-2161 (1993) https://doi.org/10.1103/PhysRevE.48.2157
  3. C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, 'Electron trapping in self-modulated laser wakefields by raman backscatter,' Phys. Rev. Lett. 79, 3909-3912 (1997) https://doi.org/10.1103/PhysRevLett.79.3909
  4. K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y. Kitagawa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang, Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer, and T. Tajima, 'Observation of ultrahigh gradient electron acceleration by self-modulated intense short laser pulse,' Phys. Rev. Lett. 74, 4428-4431 (1995) https://doi.org/10.1103/PhysRevLett.74.4428
  5. A. Ting, K. Krushelnick, C. I. Moore, H. R. Burris, E. Esarey, J. Krall, and P. Sprangle, 'Temporal evolution of self-modulated laser wakefields measured by coherent Thomson scattering,' Phys. Rev. Lett. 77, 5377-5380 (1996) https://doi.org/10.1103/PhysRevLett.77.5377
  6. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, 'Electron acceleration from the wavebreaking of relativistic plasma waves,' Nature (London) 337, 606-608 (1996)
  7. D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, 'Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,' Science 273, 472-475 (1996) https://doi.org/10.1126/science.273.5274.472
  8. N. Hafz, M. S. Hur, G. H. Kim, C. Kim, I. S. Ko, and H. Suk, 'Quasimonoenergetic electron beam generation by using a pinholike collimator in a self-modulated laser wakefield acceleration,' Phys. Rev. E 73, 016405-1-7 (2006) https://doi.org/10.1103/PhysRevE.73.016405
  9. B. Hiding, K.-U. Amthor, B. Liesfeld, H. Schwoere, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J. G. Gallacher, S. P. Jamison, D. Jaroszynski, G. Pretzler, and R. Sauerbrey, 'Generation of quasimonoenergetic electron bunches with 80-fs laser pulse,' Phys. Rev. Lett. 96, 105004-1-4 (2006) https://doi.org/10.1103/PhysRevLett.96.105004
  10. J. R. Penano, B. Hafizi, P. Sprangle, R. F. Hubbard, and A. Ting, 'Raman forward scattering and self-modulation of laser pulses in tapered plasma channels,' Phys. Rev. E 66, 036402-1-13 (2002) https://doi.org/10.1103/PhysRevE.66.036402
  11. B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Penano, 'Relativistic effects on intense laser beam propagation in plasma channels,' Phys. Plasmas 10, 1483-1491 (2003) https://doi.org/10.1063/1.1562937
  12. P. Jha, R. G. Singh, A. K. Upadhyaya, and R. K. Mishra, 'Propagation of an intense laser beam in a tapered plasma channel,' Phys. Plasmas 15, 033101-1-6(2008) https://doi.org/10.1063/1.2841018
  13. J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, 'An object-oriented electromagnetic PIC code,' Comp. Phys. Comm. 87, 199-211 (1995) https://doi.org/10.1016/0010-4655(94)00173-Y
  14. S. H. Yoo, S. J. Hahn, M. S. Hur, H. Jang, I. Hwang, J. H. Kim, and H. Suk, 'Energy enhancement of the self-modulated laser wakefield acceleration by using the plasma density gradient,' J. Korean. Phys. Soc. 51, 402-408 (2007) https://doi.org/10.3938/jkps.51.402
  15. E. Esarey, P. Sprangle, J. Krall, and A. Ting, 'Overview of plasma-based accelerator concepts,' IEEE Trans. Plasma Sci. 24, 252-288 (1996) https://doi.org/10.1109/27.509991

Cited by

  1. Monoenergetic Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator vol.104, pp.19, 2010, https://doi.org/10.1103/PhysRevLett.104.195002