Browse > Article
http://dx.doi.org/10.3807/JOSK.2009.13.1.042

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects  

Yoo, Seung-Hoon (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute)
Kim, Jae-Hoon (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute)
Kim, Jong-Uk (Advanced X-ray Medical System Research Group, Korea Electrotechnology-Research Institute)
Seo, Ju-Tae (Department of Physics, Chung-Ang University)
Hahn, Sang-June (Department of Physics, Chung-Ang University)
Publication Information
Journal of the Optical Society of Korea / v.13, no.1, 2009 , pp. 42-47 More about this Journal
Abstract
The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.
Keywords
Self-modulated laser wakefield acceleration; Density gradient; Relativistic effect; Kinetic effect; Electron dephasing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 T. Tajima and J. M. Dawson, 'Laser electron accelerator,' Phys. Rev. Lett. 43, 267-270 (1979)   DOI
2 J. Krall, A. Ting, E. Esarey, and P. Sprangle, 'Enhanced acceleration in a self-modulated-laser wake-field accelerator,' Phys. Rev. E 48, 2157-2161 (1993)   DOI
3 C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, 'Electron trapping in self-modulated laser wakefields by raman backscatter,' Phys. Rev. Lett. 79, 3909-3912 (1997)   DOI   ScienceOn
4 K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y. Kitagawa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang, Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer, and T. Tajima, 'Observation of ultrahigh gradient electron acceleration by self-modulated intense short laser pulse,' Phys. Rev. Lett. 74, 4428-4431 (1995)   DOI   ScienceOn
5 A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, 'Electron acceleration from the wavebreaking of relativistic plasma waves,' Nature (London) 337, 606-608 (1996)
6 D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, 'Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,' Science 273, 472-475 (1996)   DOI   ScienceOn
7 N. Hafz, M. S. Hur, G. H. Kim, C. Kim, I. S. Ko, and H. Suk, 'Quasimonoenergetic electron beam generation by using a pinholike collimator in a self-modulated laser wakefield acceleration,' Phys. Rev. E 73, 016405-1-7 (2006)   DOI
8 J. R. Penano, B. Hafizi, P. Sprangle, R. F. Hubbard, and A. Ting, 'Raman forward scattering and self-modulation of laser pulses in tapered plasma channels,' Phys. Rev. E 66, 036402-1-13 (2002)   DOI
9 B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Penano, 'Relativistic effects on intense laser beam propagation in plasma channels,' Phys. Plasmas 10, 1483-1491 (2003)   DOI   ScienceOn
10 P. Jha, R. G. Singh, A. K. Upadhyaya, and R. K. Mishra, 'Propagation of an intense laser beam in a tapered plasma channel,' Phys. Plasmas 15, 033101-1-6(2008)   DOI   ScienceOn
11 J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, 'An object-oriented electromagnetic PIC code,' Comp. Phys. Comm. 87, 199-211 (1995)   DOI   ScienceOn
12 S. H. Yoo, S. J. Hahn, M. S. Hur, H. Jang, I. Hwang, J. H. Kim, and H. Suk, 'Energy enhancement of the self-modulated laser wakefield acceleration by using the plasma density gradient,' J. Korean. Phys. Soc. 51, 402-408 (2007)   DOI   ScienceOn
13 E. Esarey, P. Sprangle, J. Krall, and A. Ting, 'Overview of plasma-based accelerator concepts,' IEEE Trans. Plasma Sci. 24, 252-288 (1996)   DOI   ScienceOn
14 B. Hiding, K.-U. Amthor, B. Liesfeld, H. Schwoere, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J. G. Gallacher, S. P. Jamison, D. Jaroszynski, G. Pretzler, and R. Sauerbrey, 'Generation of quasimonoenergetic electron bunches with 80-fs laser pulse,' Phys. Rev. Lett. 96, 105004-1-4 (2006)   DOI   ScienceOn
15 A. Ting, K. Krushelnick, C. I. Moore, H. R. Burris, E. Esarey, J. Krall, and P. Sprangle, 'Temporal evolution of self-modulated laser wakefields measured by coherent Thomson scattering,' Phys. Rev. Lett. 77, 5377-5380 (1996)   DOI   ScienceOn