• Title/Summary/Keyword: Ac Impedance

Search Result 439, Processing Time 0.021 seconds

Electrical properties of TiO$_2$added ZnO (ZnO가 첨가된 TiO$_2$의 전기적성질)

  • 김태원;전장배;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.300-302
    • /
    • 1996
  • Using the AC and DC methods we have studied th electrical properties of ZnO added TiO$_2$. The electrical conductivity of ZnO added TiO$_2$ was nearly unchanged with increasing the content of ZnO. Ac conductivity and conductance as a function of Frequency showed the similar trends. The impedance, admittance, and modulus spectrums were consistent with the results of DC conductivity.

  • PDF

AC Impedance Characteristics of Nanotube Formed Ti-Nb-Zr Alloy (나노튜브 형성된 Ti-Nb-Zr 합금의 임피던스 특성)

  • Jang, Seung-Hyeon;Go, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.104-104
    • /
    • 2008
  • Ti과 Ti합금은 우수한 생체적합성을 가지고 있어 생체용 재료로 널리 이용되고 있지만 기계적 물성 및 합금원소의 세포 독성에 대한 문제가 제시되고 있다. 본 실험에서는 세포 독성이 없는 Nb과 Zr을 합금원소로 하여 Ti-Nb-Zr 3원계 합금을 제조하고 생체적합성을 향상시키기 위해 양극산화법을 이용하여 $TiO_2$ nanotube를 형성하고 AC임피던스를 통하여 그 특성을 조사하였다.

  • PDF

The Analysis of DC and AC Current Crowding Effects Model in Bipolar Junction Transistors Using a New Extraction Method (새로운 측정방법을 이용한 바이폴라 트랜지스터에서의 직류 및 교류 전류 편중 효과에 관한 해석)

  • 이흥수;이성현;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.46-52
    • /
    • 1994
  • DC and AC current crowding effects for microwave and high speed bipolar transistors are investigated in detail using a new and accurate measurement technique based on Z-parameter equationa. Using the new measurement technique dc and ac current crowding effects have been explained clearly in bipolar junction transistors. To model ac crowding effects a capacitive element defined as base capacitance (C$_b$), called ac crowding capacitance is added to base resistance in parallel thereby treating the base resistance(R$_b$) as base impedance Z$_b$. It is shown that base resistance decreases with increasing collector current due to dc current crowding and approaches to a certain limited value at high collector current due to current crowding and approaches to a certain limited value at high collector currents regardless of the emitter size. It is also observed that due to ac current crowding base capacitance increases with increasing collector current. To quantigy the ac crowding effects for SPICE circuit simulation the base capacitance(C$_b$) including the base depletion and diffusion components has been modeled with an analytical expression form.

  • PDF

AC Modeling of the ggNMOS ESD Protection Device

  • Choi, Jin-Young
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • From AC analysis results utilizing a 2-dimensional device simulator, we extracted an AC-equivalent circuit of a grounded-gate NMOS (ggNMOS) electrostatic discharge (ESD) protection device. The extracted equivalent circuit is utilized to analyze the effects of the parasitics in a ggNMOS protection device on the characteristics of a low noise amplifier (LNA). We have shown that the effects of the parasitics can appear exaggerated for an impedance matching aspect and that the noise contribution of the parasitic resistances cannot be counted if the ggNMOS protection device is modeled by a single capacitor, as in prior publications. We have confirmed that the major changes in the characteristics of an LNA when connecting an NMOS protection device at the input are reduction of the power gain and degradation of the noise performance. We have also shown that the performance degradation worsens as the substrate resistance is reduced, which could not be detected if a single capacitor model is used.

  • PDF

Analysis for Autotransformer-Fed AC Electric Railroad System Using Constant Current Mode (정전류 철도 부하를 이용한 교류 전기 철도 급전 시스템 해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode. The theory is based on the solution of algebraic. The proposed modeling is considered the line self-impedances and mutual-impedances. Besides, the load modeling improved results are obtained as application to the proposed constant current mode. In the analysis on AT-fed AC electric railroad system circuit, a generalized analysis method using the loop equation on a case by case. the simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The model contains assumptions regarding the representation of the autotransformer, the impedance of the track/catenary system, and the grounding arrangements, which all effect the accuracy of the result. The modeling results seem very reasonable. It is established that techniques for the AC electric railroad system modeling and analysis.

  • PDF

Investigation on Radiation Characteristics of 42″ AC-PDP (42″ AC-PDP의 방사특성에 대한 연구)

  • Lim Heon-Yong;Kim Min-Seok;Park Dongwook;Lee Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.841-847
    • /
    • 2004
  • EMI emission characteristics of 42" AC-PDP panel are investigated in this paper. First, EMI emission source was modeled the scan electrode and the sustain electrode to a simple electric and magnetic dipole type radiator. Second, EMI emission source was modeled as reconfigured the scan electrode and the sustain electrode. The primary source of EMI emission was investigated using FEM calculation of the wave impedance and 3 dB beam width. The third. the EMI emission level was estimated using the measured sustain electrode current. Also, EMI emission level of 42" AC-PDP was measured. The results show that the calculated EMI emission level from the simple electric dipole model was shown to agree with that from the corresponding FEM simulation.

TRV Analysis for AC Filter Circuit Breaker in HVDC System (HVDC시스템에서 AC 필터 차단기의 TRV해석)

  • Kim, Chan-Ki;Kim, Jin-Young;Sin, Jin-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • The circuit breaker in an electric power system is not operated when the voltage in the circuit breaker is higher than the rated transient recovery voltage (TRV). The TRV of a circuit breaker is characterized by re-ignition of the arc between two poles and determined by the value of connecting impedance. In this study, we simulated the peak value of TRV in the AC filter of the circuit breaker. The suitability of TRV is assessed by capacitive current switching test conditions defined by the international guide IEC62271-100.

A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack (고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기)

  • Rahim, Gul;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.

Modified Transmission Line Protection Scheme in the Presence of SCC

  • Naeini, Ehsan Mostaghimi;Vaseghi, Behrouz;Mahdavian, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.533-540
    • /
    • 2017
  • Distance relay identifies the type and location of fault by measuring the transmission line impedance. However any other factors that cause miss calculating the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly changes the measured impedance by the relay is series capacitive compensation (SCC). Another factor that changes the calculated impedance by distance relay is fault resistance. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. This method measures the voltage across SCC by phasor measurement units (PMUs) and transmits them to the relay location via communication channels. The transmitted signals are utilized to modify the voltage signal which is measured by the relay. Different operating modes of SCC and as well as different faults such as phase-to-phase and phase-to-ground faults are examined by simulations.

Development of an Intelligent Charger with a Battery Diagnosis Function Using Online Impedance Spectroscopy

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Lee, Geun-Hong;Kim, Hyung-Won;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1981-1989
    • /
    • 2016
  • Battery diagnosis is vital to battery-based applications because it ensures system reliability by avoiding battery failure. This paper presents a novel intelligent battery charger with an online diagnosis function to circumvent interruptions in system operation. The charger operates in normal charging and diagnosing modes. The diagnosis function is performed with the impedance spectroscopy technique, which is achieved by injecting a sinusoidal voltage excitation signal to the battery terminals without the need for additional hardware. The impedance spectrum of the battery is calculated based on voltage excitation and current response with the aid of an embedded digital lock in amplifier in a digital signal processor. The measured impedance data are utilized in the application of the complex nonlinear least squares method to extract the battery parameters of the equivalent circuit. These parameters are then compared with the reference values to reach a diagnosis. A prototype of the proposed charger is applied to four valve-regulated lead-acid batteries to measure AC impedance. The results are discussed.