• Title/Summary/Keyword: Abutment connection

Search Result 157, Processing Time 0.022 seconds

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT (임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석)

  • Hur Jin-Kyung;Kay Kee-Sung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT (임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석)

  • Ahn, Jong-Kwan;Kay, Kee-Sung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

THE INFLUENCE OF IMPLANT FIXTURE-ABUTMENT CONNECTION DESIGN ON SCREW LOOSENING (임플랜트 지대주에 따른 나사 풀림의 연구)

  • Mun Yang-Suk;Park Sang-Won;Vang Mong-Sook;Yang Hong-So;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.174-184
    • /
    • 2006
  • Purpose: Current trend in implant dentistry is changing from external connection to internal connection. To evaluate the splinting of external and internal connection implant on screw loosening, 2-units prosthesis was fabricated with BioPlant $System^(R)$ of external connection type and Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. Material and Method: Experimental group is classified into three groups. 1) $G_1-EE$: 2-units prosthesis was fabricated with two Bioplant $System^(R)$ of external connection type. 2) $G_1-EI$: 2-units prosthesis was fabricated with one BioPlant $System^(R)$ of external connection type and one Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. 3) $G_1-II$: 2-units prosthesis was fabricated with two Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. In fabricating 2-units prosthesis, two hexed abutments are recommended when two implants are installed parallel, otherwise one hexed abutment is used on major occlusal force area and one nonhexed abutment is used on the other area. Since it is rare to find two implants being parallel, it is hard to fabricate prosthesis with passive adaptation using two hexed abutments. It is much more difficult to acquire passive adaptation when using hex abutment compared to nonhex abutment. To evaluate the influence of hexed and nonhexed abutment on screw loosening, 2-units prosthesis was fabricated with hexed and nonhexed abutment. Experimental group is classified into three groups. 1) $G_2-HH$: 2-units prosthesis was fabricated with two hexed abutments. 2) $G_2-HN$: 2-units prosthesis was fabricated with one hexed abutment and one nonhexed abutment. 3) $G_2-NN$: 2-units prosthesis was fabricated with two nonhexed abutments. Result: The results of comparing the detorque value after loading on a each prosthesis periodically are as follows. 1. In splinting group of external and internal connection implant, $G_1-II$ group demonstrated the biggest detorque value, followed by $G_1-EI$ group and $G_1-EE$ group. 2. There is no notable significance between external connection implant of $G_1-EI$ group and $G_1-EE$ group and also no significance between internal connection implant of $G_1-EI$ group and $G_1-II$ group. 3. $G_2-HH$ group showed higher detorque value than $G_2-HN\;and\;G_2-NN$ group. From the results, we can concluded that using both external connection and internal connection implant together is clinically acceptable and in order to acquire a good passive adaptation in fabricating 2-units implant prosthesis we can use two nonhexed abutments.

FIT OF FIXTURE/ABUTMENT/SCREW INTERFACES OF INTERNAL CONNECTION IMPLANT SYSTEM

  • Kim, Jin-Sup;Kim, Hee-Jung;Chung, Chae-Heon;Baek, Dae-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.338-351
    • /
    • 2005
  • Statement of problem. Accurate fit between the implant components is important because the misfit of the implant components results in frequent screw loosening, irreversible screw fracture, plaque accumulation, poor soft tissue reaction, and destruction of osseointegration. Purpose. This study is to evaluate the machining accuracy and consistency of the implant fixture/ abutment/screw interfaces of the internal connection system by using a Stereoscopic Zoom microscope and FE-SEM(field emission scanning electron microscope) Materials and methods. The implant systems selected in this study were internal connection type implants from AVANA(Osstem^{\circledR}), Bioplant(Cowell-Medi^{\circledR}), Dio(DIO^{\circledR}), Neoplant(Neobiotech 􀋓), Implantium(Dentium􀋓)systems. Each group was acquired 2 fixtures at random. Two piece type abutment and one piece type abutment for use with each implant system were acquired. Screw were respectively used to hold a two piece type abutment to a implant fixture. The implant fixtures were perpendiculary mounted in acrylic resin block. Each two piece abutment was secured to the implant fixture by screw and one piece abutment also secured to the implant fixture. Abutment/fixture assembly were mounted in liquid unsaturated polyester. All samples were cross-sectioned with grinder-polisher unit. Finally all specimens were analysed the fit between implant fixture/abutment/screw interfaces Results and conclusions. 1. Implant fixture/abutment/screw connection interfaces of internal connection systems made in Korea were in good condition. 2. The results of the above study showed that materials and mechanical properties and quality of milling differed depending on their manufacturing companies.

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

Effect of tightening torque on the connection stability of a custom-abutment implant system: 3D finite element analysis (지대주 나사 조임 토크가 맞춤형 지대주 임플란트 시스템의 연결부 안정성에 미치는 영향: 3차원 유한 요소 해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • Purpose: This study aims to examine the stress distribution effect of tightening torques of different abutment screws in a custom-abutment implant system on the abutment-fixture connection interface stability using finite element analysis. Methods: The custom-abutment implant system structures used in this study were designed using CATIA program. It was presumed that the abutment screws with a tightening torque of 10, 20, and 30 N·cm fixed the abutment and fixture. Furthermore, two external loadings, vertical loading and oblique loading, were applied. Results: When the screw tightening torque was 10 N·cm, the maximum stress value of the abutment screw was 287.2 MPa that is equivalent to 33% of Ti-6Al-4V yield strength. When the tightening torque was 20 N·cm, the maximum stress value of the abutment screw was 573.9 MPa that is equivalent to 65% of Ti-6Al-4V yield strength. When the tightening torque was 30 N·cm, the maximum stress value of the abutment screw was 859.6 MPa that is similar to the Ti-6Al-4V yield strength. Conclusion: As the screw preload rose when applying each tightening torque to the custom-abutment implant system, the equivalent stress increased. It was found that the tightening torque of the abutment influenced the abutment-fixture connection interface stability. The analysis results indicate that a custom-abutment implant system should closely consider the optimal tightening torque according to clinical functional loads.

Machining Tolerance of Various Implant Systems and their Components (치과용 임플란트 시스템의 기계적 가공오차에 관한 연구)

  • Kim, Hyeong-Seob;Kwon, Kung-Rock;Han, Jung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Misfit of implant components was very important in terms of prosthodontics. they has been linked to prosthetic complications such as screw loosening and fracture. Although there are many results about rotational freedom or machining tolerance between fixture and abutments, the data about domestic implant systems are lacking. The aim of this in vitro study was to evaluate the rotational freedom of domestic external and internal connection implant systems between their fixtures/anlaogs and abutments comparing imported systems. Materials and Methods: Rotational freedom between abutments and fixtures/analogs was investigated by using digitalized rotational angle measuring device. (1) 1 domestic external connection system(Neobiotec) and 2 imported external connection systems(Nobel Biocare, Anthorgyr), (2) 1 domestic internal connection system(Dentium) and 4 imported external connection systems(Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply), and (3) 1 domestic zirconia external connection abutment(ZirAce) were evaluated. Each group has 3 samples. Mean values for each group were analyzed. Results: The differences relative to rotational freedom between domestic and imported implant systems were observed but domestic external connection implant system showed about 2.67 degrees(in case of fixture) and internal connection system showed about 4.3 degrees(in case of fixture). Domestic zirconia abutment showed less than 3 degrees of rotational freedom in a situation where the abutment was connected to an implant fixture egardless of domestic or imported systems. Conclusion: Newly developed digitalized rotational angle measuring device has high measuring resolution. The rotational freedom of domestic implant systems were similar to imported implant systems.

Pull-off resistance of a screwless implant-abutment connection and surface evaluation after cyclic loading

  • Alevizakos, Vasilios;Mosch, Richard;Mitov, Gergo;Othman, Ahmed;See, Constantin von
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 2021
  • Purpose. The aim of this study was to investigate to what extent cyclic load affects the screwless implant-abutment connection for Morse taper dental implants. Materials and Methods. 16 implants (SICvantage max) and 16 abutments (Swiss Cross) were used. The screwless implant-abutment connection was subjected to 10,000 cycles of axial loading with a maximum force of 120 N. For the pull-off testing, before and after the same cyclic loading, the required force for disconnecting the remaining 6 implant-abutment connections was measured. The surface of 10 abutments was examined using a scanning electron microscope 120× before and after loading. Results. The pull-off test showed a significant decrease in the vertical force required to pull the abutment from the implant with mean 229.39 N ± 18.23 before loading, and 204.30 N ± 13.51 after loading (P<.01). Apart from the appearance of polished surface areas and slight signs of wear, no visible damages were found on the abutments. Conclusion. The deformation on the polished abutment surface might represent the result of micro movements within the implant-abutment connection during loading. Although there was a decrease of the pull-off force values after cyclic loading, this might not have a notable effect on the clinical performance.