• Title/Summary/Keyword: Ablation efficiency

Search Result 31, Processing Time 0.029 seconds

Effect of Pulse Energy and Pulse Repetition Rate at the Identical Total Power During Enamel Ablation Using an Er:YAG Laser (Er:YAG 레이저를 이용한 치아 삭제시 동일출력에서 펄스에너지와 조사반복률의 영향)

  • Won, Jung-Yeon;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • The objectives of this study was to investigate the amount of tooth ablation and the change of intrapulpal temperature by Er:YAG laser as it relates to pulse energy and pulse repetition rate at the identical power and, thereby, to reveal which of the two parameters strongly relates with ablation efficiency and intrapulpal temperature. Extracted healthy human molar teeth were sectioned into two pieces and each specimen was irradiated within the combination of pulse energy and pulse repetition time at the same power of 3W; $300mJy{\times}10Hz$ group, $200mJy{\times}15Hz$ group, and $150mJy{\times}20Hz$ group. Each specimen comprised ten tooth specimens. A laser beam with conjunction of a water flow rate of 1.6 ml/min was applied over enamel surfaces of the specimens during 3 seconds and the ablation amount was determined by difference in weight before and after irradiation. To investigate the temperature change in the pulp according to the above groups, another five extracted healthy human molar teeth were prepared. Each tooth was embedded into resin block and the temperature-measuring probes were kept on the irradiated and the opposite walls in the dental pulp during lasing. When the power was kept constant at 3W, ablation amount increased with pulse energy rather than pulse repetition rate (p=0.000). Although intrapulpal temperature increased with pulse repetition rate, there were no significant differences among the groups and between the irradiated and the opposite pulpal walls, except at a condition of $150y{\times}20Hz$ (p=0.033). Conclusively, it is suggested that ablation efficacy is influenced by pulse energy rather than pulse repetition rate.

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.397-401
    • /
    • 2008
  • The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.

Radiofrequency in arthroscopic shoulder surgery: a systematic review

  • Neeraj Vij;Joseph N. Liu;Nirav Amin
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.4
    • /
    • pp.423-437
    • /
    • 2023
  • Background: Radiofrequency has seen an increase in use in orthopedics including cartilage lesion debridement in the hip and knee as well as many applications in arthroscopic shoulder surgery. The purpose of this systematic review is to evaluate the safety and usage of radiofrequency in the shoulder. Methods: This systematic review was registered with PROSPERO (international registry) and followed the preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) guidelines. Embase and PubMed were searched using: "shoulder," "rotator cuff," "biceps," "acromion" AND "monopolar," "bipolar," "ablation," "coblation," and "radiofrequency ablation." The title and abstract review were performed independently. Any discrepancies were addressed through open discussion. Results: A total of 63 studies were included. Radiofrequency is currently utilized in impingement syndrome, fracture fixation, instability, nerve injury, adhesive capsulitis, postoperative stiffness, and rotator cuff disease. Adverse events, namely superficial burns, are limited to case reports and case series, with higher-level evidence demonstrating safe use when used below the temperature threshold. Bipolar radiofrequency may decrease operative time and decrease the cost per case. Conclusions: Shoulder radiofrequency has a wide scope of application in various shoulder pathologies. Shoulder radiofrequency is safe; however, requires practitioners to be cognizant of the potential for thermal burn injuries. Bipolar radiofrequency may represent a more efficacious and economic treatment modality. Safety precautions have been executed by institutions to cut down patient complications from shoulder radiofrequency. Future research is required to determine what measures can be taken to further minimize the risk of thermal burns.

New Drug Delivery System Based on a Laser-Induced Shockwave (레이저 유도 충격파를 이용한 첨단 약물전달시스템 개발)

  • Han, Tae-Hee;Lee, Hyun-Hee;Gojani, Ardian B.;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.67-71
    • /
    • 2010
  • Impingement of a high power laser pulse (above 1 GW/$cm^2$) on a metal foil causes its ablation, which is characterized by a rapid expulsion of matter and the initiation of a strong shock wave inside the solid metal. The shock propagates through the foil and reverberates on the rear side, causing its deformation and microparticle ejection, which were deposited on the foil prior to ablation. Based on this principle, we are developing a new drug delivery system - Biolistic gun. Current study is focused on the controllability, stability, efficiency of the system, and characterization of the penetration shapes in various conditions. We have tested the system by applying direct and confined ablation. Several different media combinations were used for confinement-BK7 glass, water, BK7 glass with water, and succulent jelly(ultrasono jelly, RHAPAPHRM). Biological tissue was replicated by a 3% gelatin solution. Present data shows that the confinement results in enhancement of penetration shape reached by 5 um cobalt microparticles. Based on the analysis of the experimental results we observe that the penetration shape of microparticles can be controlled by adjusting the thickness of confinement media.

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

ZoomISEG: Interactive Multi-Scale Fusion for Histopathology Whole Slide Image Segmentation (ZoomISEG: 조직 병리학 전체 슬라이드 영상 분할을 위한 대화형 다중스케일 융합)

  • Seonghui Min;Won-Ki Jeong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.127-135
    • /
    • 2023
  • Accurate segmentation of histopathology whole slide images (WSIs) is a crucial task for disease diagnosis and treatment planning. However, conventional automated segmentation algorithms may not always be applicable to WSI segmentation due to their large size and variations in tissue appearance, staining, and imaging conditions. Recent advances in interactive segmentation, which combines human expertise with algorithms, have shown promise to improve efficiency and accuracy in WSI segmentation but also presented us with challenging issues. In this paper, we propose a novel interactive segmentation method, ZoomISEG, that leverages multi-resolution WSIs. We demonstrate the efficacy and performance of the proposed method via comparison with conventional single-scale methods and an ablation study. The results confirm that the proposed method can reduce human interaction while achieving accuracy comparable to that of the brute-force approach using the highest-resolution data.

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF