• Title/Summary/Keyword: Ability of the mathematics problem-solving

Search Result 293, Processing Time 0.022 seconds

An Analysis on Problem Solving Ability of 3rd Grade Types of Multiplication and Division Word Problem (곱셈과 나눗셈 문장제 유형에 따른 문제해결능력)

  • Lim, Ja Sun;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.501-525
    • /
    • 2015
  • This study analyzes arithmetic word problem of multiplication and division in the mathematics textbooks and workbooks of 3rd grade in elementary school according to 2009 revised curriculum. And we analyzes type of the problem solving ability which 4th graders prefer in the course of arithmetic word problem solving and the problem solving ability as per the type in order to seek efficient teaching methods on arithmetic word problem solving of students. First, in the mathematics textbook and workbook of 3rd grade, arithmetic word problem of multiplication and division suggested various things such as thought opening, activities, finish, and let's check. As per the semantic element, multiplication was classified into 5 types of cumulated addition of same number, rate, comparison, arrayal and combination while division was classified into 2 types of division into equal parts and division by equal part. According to result of analysis, the type of cumulated addition of same number was the most one for multiplication while 2 types of division into equal parts and division by equal part were evenly spread in division. Second, according to 1st test result of arithmetic word problem solving ability in the element of arithmetic operation meaning, 4th grade showed type of cumulated addition of same number as the highest correct answer ratio for multiplication. As for division, 4th grade showed 90% correct answer ratio in 4 questionnaires out of 5 questionnaires. And 2nd test showed arithmetic word problem solving ability in the element of arithmetic operation construction, as for multiplication and division, correct answer ratio was higher in the case that 4th grade students did not know the result than the case they did not know changed amount or initial amount. This was because the case of asking the result was suggested in the mathematics textbook and workbook and therefore, it was difficult for students to understand such questions as changed amount or initial amount which they did not see frequently. Therefore, it is required for students to experience more varied types of problems so that they can more easily recognize problems seen from a textbook and then, improve their understanding of problems and problem solving ability.

An Analysis of Problem-solving Ability and Mathematical Justification of Mathematical Essay Problems of 5th Grade Students in Elementary School (수리논술형 문제에 대한 초등학교 5학년 학생들의 문제해결력과 수학적 정당화 과정 분석)

  • Kim, Young-Sook;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.48 no.2
    • /
    • pp.149-167
    • /
    • 2009
  • This study was aimed to examine problem-solving ability of fifth graders on two types of mathematical essay problems, and to analyze the process of mathematical justification in solving the essay problems. For this purpose, a total of 14 mathematical essay problems were developed, in which half of the items were single tasks and the other half were data-provided tasks. Sixteen students with higher academic achievements in mathematics and the Korean language were chosen, and were given to solve the mathematical essay problems individually. They then were asked to justify their solution methods in groups of 4 and to reach a consensus through negotiation among group members. Students were good at understanding the given single tasks but they often revealed lack of logical thinking and representation. They also tended to use everyday language rather than mathematical language in explaining their solution processes. Some students experienced difficulty in understanding the meaning of data in the essay problems. With regard to mathematical justification, students employed more internal justification by experience or mathematical logic than external justification by authority. Given this, this paper includes implications for teachers on how they need to teach mathematics in order to foster students' logical thinking and communication.

  • PDF

Using the Cabri3D Program for Enhancing Problem Solving Ability (문제해결력 신장을 위한 Cabri3D의 교육적 활용)

  • Kim, Nam-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.345-366
    • /
    • 2006
  • In this study, we investigated the methods of using the Cabri3D program for education of problem solving in school mathematics. Cabri3D is the program that can represent 3-dimensional figures and explore these in dynamic method. By using this program, we can see mathematical relations in space or mathematical properties in 3-dimensional figures vidually. We conducted classroom activity exploring Cabri3D with 15 pre-service leachers in 2006. In this process, we collected practical examples that can assist four stages of problem solving. Through the analysis of these examples, we concluded that Cabri3D is useful instrument to enhance problem solving ability and suggested it's educational usage as follows. In the stage of understanding the problem, it can be used to serve visual understanding and intuitive belief on the meaning of the problem, mathematical relations or properties in 3-dimensional figures. In the stage of devising a plan, it can be used to extend students's 2-dimensional thinking to 3-dimensional thinking by analogy. In the stage of carrying out the plan, it can be used to help the process to lead deductive thinking. In the stage of looking back at the work, it can be used to assist the process applying present work's result or method to another problem, checking the work, new problem posing.

  • PDF

The Effect of the Problem-Based Learning for Training 'Classroom Friendly Teachers' - Focusing on the Elementary School Mathematics Education ('교실친화적 교사' 양성을 위한 문제중심학습 적용 효과 - 초등수학교육을 중심으로)

  • Lee, Kwang-Ho
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.543-562
    • /
    • 2011
  • In this research, the PBL program was developed in terms of 'classroom practice ability', 'self-develop ability', and 'teaching profession character' which classroom friendly teachers get ready and was applied to the classroom friendly elementary mathematics teachers for studying the effectiveness of the program. From the result elementary preservice teachers' disposition in terms of thought about mathematics, mathematics learning, and mathematics teaching was changed to the positive direction through the PBL. They could developed their classroom practice ability, self-develop ability, and teaching profession character through application of new knowledge and plan for problem solving and reflection after solving the problems.

  • PDF

An effect coming to the problem solving ability from the problem posing activity by presenting the problem situation (문제 상황 제시에 따른 문제만들기 활동이 문제해결력에 미치는 영향)

  • Kim Jun Kyum;Lim Mun Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.5 no.1
    • /
    • pp.77-98
    • /
    • 2001
  • This study has a purpose to find out how the problem posing activity by presenting the problem situation effects to the mathematical problem solving ability. It was applied in two classes(Experimental group-35, Controlled group-37) of the fourth grade at ‘D’ Elementary school in Bang Jin Chung nam and 40 Elementary school teachers working in Dang Jin. The presenting types of problem situation are the picture type, the language type, the complex type(picture type+ language type), the free type. And then let them have the problem posing activity. Also, We applied both the teaching-teaming plan and practice question designed by ourself. The results of teaching and learning activities according to the type of problem situation presentation are as follows; We found out that the learning activity of the mathematical problem posing was helpful to the students in the development of the mathematical problem solving ability. Also, We found out that the mathematical problem posing made the students positively change their attitude and their own methods for mathematical problem solving.

  • PDF

A study on assessment framework in Mathematics Education (수학과 평가틀에 관한 고찰)

  • 황혜정;최승현
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.2
    • /
    • pp.459-471
    • /
    • 1999
  • This study is to develop a mathematics assessment framework based on the mathematics assessment framework and content strands suggested by KEDI, NCTM, NAEP, TIMSS, Oregon State, New Zealand. According to the literature review, there has been more emphasis that students themselves 'communicate' what they 'understood' and how they 'thought' during the situation of 'solving problems'. As a result, communication ability is considered one of the most important factors in assessment situation, which always accompany the abilities of understanding, thinking, problem-solving, etc. In conclusion, the framework related to mathematical knowledge consists of content and behavior domains. The content domain is categorized into 6 content areas of the 7th mathematics curriculum, and the behavior domain is divided into computation, understanding, inference, problem-solving, and communication.

  • PDF

A Concretization and Application of Deductive Problem Making Method (연역적 문제만들기 방법의 구체화와 활용)

  • Han, Inki;Huh, Eunsook;Seo, Eunhee
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.653-674
    • /
    • 2023
  • The development of mathematical problem solving ability and the making(transforming) mathematical problems are consistently emphasized in the mathematics curriculum. However, research on the problem making methods or the analysis of the characteristics of problem making methods itself is not yet active in mathematics education in Korea. In this study, we concretize the method of deductive problem making(DPM) in a different direction from the what-if-not method proposed by Brown & Walter, and present the characteristics and phases of this method. Since in DPM the components of the problem solving process of the initial problem are changed and problems are made by going backwards from the phases of problem solving procedure, so the problem solving process precedes the formulating problem. The DPM is related to the verifying and expanding the results of problem solving in the reflection phase of problem solving. And when a teacher wants to transform or expand an initial problem for practice problems or tests, etc., DPM can be used.

The effects of step learning according to level mainly performed at math room on the growth of problem-solving ability (수학실 중심의 수준별 단계학습이 문제해결력에 미치는 영향)

  • 박기석;신숙철
    • Journal of the Korean School Mathematics Society
    • /
    • v.2 no.1
    • /
    • pp.79-91
    • /
    • 1999
  • The aim of this study focused on student-centered learning not teacher-centered teaching in middle school math classes. This study was performed to check the growth of students' problem-solving abilities, learning attitudes and changes in learning motivation among affective characteristics. The results of this study is as followings: 1) The controlled group a heterogeneous group which had classes in a math room, had more meaningful growth than the uncontrolled group. The results of the study show that the problem-solving abilities of the high-leveled group were better than those of the low-leveled group. 2) The controlled group has shown meaningful difference in their mean in learning aptitude test and attitude test converted their score into 100 points than uncontrolled group, and various kinds of learning materials suitable for problem solving are proved as a good learning factor to induce students' motivation and interest. 3) Students prefer to have classes in a math room to the small-sized and large-numbered classrooms. The atmosphere in a math room is more suitable to improving their problem-solving abilities. In this context, the classes performed in a math room are fairly positive. Consequently, students' leveled learning activities performed in a math room can get their learning motivation and attention from those who are lack of interest and think math is difficult and be effective to increase their problem-solving abilities as a learning method for acquiring the whole course of solving the problems.

  • PDF

The study on the Integrated Thinking Ability in Problem Based Learning Program Using Historical Materials in Mathematics (수학 문제중심학습(PBL)에서 융합적 사고력 신장 도모에 관한 의의 - 역사 소재를 중심으로-)

  • Hwang, Hye Jeang;Huh, Nan
    • Communications of Mathematical Education
    • /
    • v.30 no.2
    • /
    • pp.161-178
    • /
    • 2016
  • Mathematics problem based learning(PBL), which has recently attracted much attention, is a teaching and learning method to increase mathematical ability and help learning mathematical concepts and principles through problem solving using students' mathematical prerequisite knowledge. In spite of such a quite attention, it is not easy to apply and practice PBL actually in school mathematics. Furthermore, the recent instructional situations or environments has focused on student's self construction of their learning and its process. Because of this reason, to whom is related to mathematics education including math teachers, investigation and recognition on the degree of students' acquisition of mathematical thinking skills and strategies(for example, inductive and deductive thinking, critical thinking, creative thinking) is an very important work. Thus, developing mathematical thinking skills is one of the most important goals of school mathematics. In particular, recently, connection or integration of one subject and the other subject in school is emphasized, and then mathematics might be one of the most important subjects to have a significant role to connect or integrate with other subjects. While considering the reason is that the ultimate goal of mathematics education is to pursue an enhancement of mathematical thinking ability through the enhancement of problem solving ability, this study aimed to implement basically what is the meaning of the integrated thinking ability in problem based learning theory in Mathematics. In addition, using historical materials, this study was to develop mathematical materials and a sample of a concrete instructional guideline for enhancing integrated thinking ability in problem based learning program.

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF