• Title/Summary/Keyword: Abeliophyllum distichum Nakai

Search Result 34, Processing Time 0.029 seconds

Anti-Inflammatory Effect of the Extracts from Abeliophyllum distichum Nakai in LPS-Stimulated RAW264.7 Cells

  • Park, Gwang Hun;Park, Jae Ho;Eo, Hyun Ji;Song, Hun Min;Lee, Man Hyo;Lee, Jeong Rak;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.209-214
    • /
    • 2014
  • In this study, we investigated whether A. distichum decreases the production of inflammatory mediators through downregulation of the NF-${\kappa}B$ and ERK pathway. Our data indicated that A. distichum leaf inhibits the overexpression of iNOS in protein and mRNA levels, and subsequently blocked LPS-mediated NO overproduction in RAW264.7 cells. A. distichum leaf inhibited $I{\kappa}B-{\alpha}$ degradation and p65 nuclear translocation, and subsequently suppressed transcriptional activity of NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. In addition, A. distichum leaf suppressed LPS-induced ERK1/2 activation by decreasing phosphorylation of ERK1/2. These findings suggest that A. distichum leaf shows anti-inflammatory activities through suppressing ERK-mediated NF-${\kappa}B$ activation in mouse macrophage.

Induction of Cyclin D1 Proteasomal Degradation by Branch Extracts from Abeliophyllum distichum Nakai in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Park, Jae Ho;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • Abeliophyllum distichum Nakai (A. distichum) has been reported to exert the inhibitory effect on angiotensin converting enzyme and aldose reductase. Recently, our group found that branch extracts of A. distichum (EAFAD-B) induce apoptosis through ATF3 activation in human colon cancer cells. However, anti-cancer reagents exert their activity through the regulation of various molecular targets. Therefore, the elucidation of potential mechanisms of EAFAD-B for anti-cancer activity may be necessary. To elucidate the potential mechanism of EAFAD-B for anti-cancer activity, we evaluated the regulation of cyclin D1 in human colon cancer cells. EAFAD-B decreased cellular accumulation of cyclin D1 protein. However, cyclin D1 mRNA was not changed by EAFAD-B. Inhibition of proteasomal degradation by MG132 attenuated EAFAD-B-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with EAFAD-B. In addition, EAFAD-B induced cyclin D1 phosphorylation at threonine-286 and the point mutation of threonine-286 to alanine attenuated EAFAD-B-mediated cyclin D1 proteasomal degradation. Inhibitions of both ERK1/2 by PD98059 and NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 downregulation by EAFAD-B. From these results, we suggest that EAFAD-B-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via ERK1/2-dependent NF-κB activation. The current study provides new mechanistic link between EAFAD-B and anti-cancer activity in human colon cancer cells.

A new natural habitat of Abeliophyllum distichum Nakai (미선나무(Abeliophyllum distichum Nakai)의 새로운 자생지 보고)

  • Kim, Dong-Kap;Kim, Joo-Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.4
    • /
    • pp.573-582
    • /
    • 2008
  • We report a newly found natural habitat of Abeliophyllum distichum in mountainous slope range of Yeongdong-gun, Chungbuk Province. Abeliophyllum distichum Nakai is one of the Korean monotypic endemic species. Natural growth habitats of this species have been recorded from seven sites up to now, and all of the natural habitats are located in middle (Chungbuk Prov.) and middle west (Jeonbuk Prov.) parts of South Korea. Among the previously recorded seven natural habitats, six sites have been designated as Korean national monuments and protected with in situ conservation. New natural habitat of A. distichum is located on northwest slope of stiff hillock area beside the small stream, Seolgye-ri, Yeongdong-eup, Yeongdong-gun, Chungbuk Province. Total growing area is nearly $3,000 m^2$. It is 10-25 cm in soil depth and pH 5.0-6.5 in soil acidity in that area. And many of A. distichum are clustered with 2-5 individuals extended by stoloniferous asexual reproduction. And the total numbers of A. distichum are about 700 individuals with only typical white flowers, and the ratio between pin type and thrum type is 37% and 63%, respectively. The huge population of A. distichum is growing with Quercus mongolica-Fraxinus rhynchophylla association in a mixed forest, and it shows high affinity with Stephanandra incisa, Ligustrum obtusifolium, Euonymus alatus for. ciliatodentatus, and Smilax sieboldi.

Antioxidant Activities and Inhibition Effects on Oxidative DNA Damage of Callus Derived from Abeliophyllum distichum Nakai

  • Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Im, Jong-Yun;Park, Min-Jeong;Lee, Seung Hyun;Kim, Do-Wan;Park, Jae-Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.74-74
    • /
    • 2018
  • Abeliophyllum distichum is Korea Endemic Plants and its genetic resources found from Korea only. Bioactivities of A. distichum such as antioxidant, anti-cancer, and anti-inflammatory studies have been proved through many researches. Whereas, there are no studies on the biological activity of its callus extracts. In this study, we investigated the antioxidant activities of callus extracts derived from A. distichum and its inhibitory effect on oxidative DNA damage. The antioxidant activities were assessed using radical scavenging assays with DPPH, ABTS, and reducing power assay and the inhibitory effects on oxidative DNA damage were measured using ${\varphi}-174$ RF I plasmid DNA cleavage assay. In addition, callus extracts derived from A. distichum showed high antioxidant acitivties and no cytotoxicity in NIH/3T3. Also, it has significantly suppressed expression of ${\gamma}$-H2AX and p53 protein and mRNA levels in NIH/3T3 cells exposed to oxidative stress. Therefore, the callus extracts derived from A. distichum has potential antioxidant activity that can provide protective effects against the oxidative DNA damage caused by free radicals. This study suggest that it is valuable as cosmetics and medicine for antioxidant and cancer preventive materials.

  • PDF

Effect of explant's position and culture method on shoot proliferation and micro-cuttings for a rare and endangered species, Abeliophyllum distichum Nakai (희귀 및 멸종위기 식물 미선나무(Abeliophyllum distichum Nakai)의 절편위치 및 치상방법에 따른 기내증식 및 미세삽목)

  • Lee, Na Nyum;Kim, Ji-Ah;Kim, Yong-Wook;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.228-234
    • /
    • 2015
  • Using either the apical or axillary bud of the endangered species Abeliophyllum distichum Nakai, we tested the effect of bud position and culture method on shoot proliferation and rooting. In shoot proliferation, the axillary bud explant was more effective than the apical bud and the effect was fostered by BA treatment, whereas no differences were observed in shoot elongation by the explant position. Spontaneous rooting was observed in the MS basal medium and resulted in conspicuous differences in the explant position : more than 80% in apical bud explant and 28% in axillary bud explant was achieved, respectively. The positional effects were also observed in BA pre-treatments: generally vertical culture method appeared to be better in shoot proliferation, growth, and rooting than that of the horizontal culture method regardless of the BA pre-treatment duration. The highest shoot multiplication was achieved through the vertical culture method with axillary bud explant, whereas the best shoot elongation and rooting was obtained using the vertical culture method with the apical bud explant. Apical bud explant was superior to axillary bud explant in ex vitro micro-cuttings and revealed a significant difference in shoot growth and root development. The above results suggest that explant position and culture method influence the efficiency of micropropagation for a rare and endangered plant Abeliophyllum distichum.

Comparison of the bioactive compounds and anti-inflammatory effects found in different flower colors from Abeliophyllum distichum Nakai (미선나무 꽃 색에 따른 생리활성 화합물 및 항염증 활성 비교)

  • Jang, Tae-Won;Choi, Ji-Soo;Han, So-Yeon;Park, Hye-Jeong;Lee, Da-Yoon;Min, Young-Sil;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.203-213
    • /
    • 2022
  • Abeliophyllum distichum (A. distichum, Korean endemic plant) is one genus and one species in the Oleaceae family. According to the color variation of petals and calyx, A. distichum is classified as A. distichum (white flower), A. distichum for. lilacinum (pink flowers), A. distichum for. eburneum (ivory flowers), and Okhwang 1 (golden flowers). In previous studies, bioactivities (antioxidant, anti-inflammatory, and anti-cancer) of A. distichum have been reported. We conducted a comparison of the differences in bioactive compounds and the anti-inflammatory effects on macrophages among four flowers of A. distichum (FAD). The identification and quantification of glycosides were analyzed by HPLC/PDA and LCMS. These results were shown FAD has rutin, hirsutrin, and acteoside. Antioxidant activity of FAD significantly decreased reactive oxygen species. In addition, FAD reduced the expression of pro-inflammatory mediators (nitric oxide, iNOS, and COX-2) in lipopolysaccharide-induced RAW 264.7 cells. For further study, we investigated the regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In conclusion, FAD may exert anti-inflammatory effects by suppressing inflammatory mediators via regulations of NF-κB and MAPK signaling pathways. Therefore, these findings suggest that FAD is a potential resource as a preventative or therapeutic agent for inflammation.

Whitening Activity of Abeliophyllum distichum Nakai Leaves According to the Ratio of Prethanol A in the Extracts

  • Jang, Tae-Won;Choi, Ji-Soo;Kim, Hoi-Ki;Lee, Eun-Ja;Han, Man-Wook;Lee, Ki-Beom;Kim, Do-Wan;Park, Jae-Ho
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.667-674
    • /
    • 2018
  • In this study, we evaluated the whitening activity of prethanol A and water extracts from Abeliophyllum distichum Nakai. The extracts were prepared using 0, 50, 70, and 100% prethanol A at $121^{\circ}C$, 1.2 atm for 15 minutes. To confirm effective extraction, the acteoside content of each extract was analyzed with the HPLC-PDA method. The antioxidant activity was evaluated using DPPH and ABTS scavenging activity assays, and the whitening activity was evaluated based on inhibitory activities on the protein and mRNA expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 2 (TRP-2), and microphthalmia-associated transcription factor (MITF) in B16 F10 cells. Each extract showed strong antioxidant and whitening activity. $IC_{50}$ values of antioxidant activity from each extract were in order of 100%, 70%, 50%, and 0%. In addition, whitening activity inhibited the protein and mRNA expression of melanin synthesis factor, following the same pattern as antioxidant activity. In conclusion, water and prethanol A extracts of A. distichum showed effective antioxidant and whitening activity and are thus considered to be valuable materials for whitening cosmetics. The results of this study will also provide basic data for the safe and efficient production of A. distichum as a cosmetic material.

Recently Augmented Natural Habitat of Abeliophyllum distichum Nakai in Yeoju-si, Gyunggi-do, Korea (미선나무(Abeliophyllum distichum Nakai)의 새로운 자생지 보고 - 경기도 여주시 자생지-)

  • Lee, Ho-Young;Kim, Tae-Gwan;Oh, Chung-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.62-70
    • /
    • 2014
  • This study was carried out to analysis the vegetation status, the habitat size and the meaning of new natural habitat, and to provide basic data for conservation or management on the newly augmented natural habitat of Abeliophyllum distichum Nakai in Yeoju-si, Gyunggi-do, Korea. A. distichum is a Korean monotypic endemic species. Most natural habitats of A. distichum have been reported in South-Central area around Chungcheong-do. The extent of occurrence of A. distichum can be enlarged to Central area due to the Yeoju-si habitat. The new habitat is located on a hillock which is composed of rock field at $37^{\circ}20{\sim}21^{\prime}N$, $137^{\circ}43{\sim}21^{\prime}E$, and 99~120m a.s.l.. The habitat size is small as about $530m^2$, and a small stream runs aside. The number of individuals of A. distichum was about 1,200. But most individuals were smaller than 0.5m height, so just about 300 individuals are taller than 1.0m height. A. distichum on Yeoju-si seemed to be maintained and distributed by vegetative propagation from elongated roots of branches. Pinus rigida and Quercus aliena dominated tree layer, and Lindera obtusiloba, Q. aliena and Acer tatricum appeared frequently in subtree layer. The shrub layer was dominated by A. distichum with Stephanandra incisa, Euonymus alatus for. ciliatodentatus, Ligustrum obtusifolium, etc. The coverage of herbaceous layer was low.

Prediction and Identification of Biochemical Pathway of Acteoside from Whole Genome Sequences of Abeliophyllum Distichum Nakai, Cultivar Ok Hwang 1ho (미선나무 품종 옥황 1호의 유전체를 활용한 Acteoside 생화학 합성과정 예측 및 확인)

  • Park, Jaeho;Xi, Hong;Han, Jiyun;Lee, Jeongmin;Kim, Yongsung;Lee, Jun-mi;Son, Janghyuk;Ahn, Joungjwa;Jang, Taewon;Choi, Jisoo;Park, Jongsun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.76-91
    • /
    • 2020
  • Whole genome sequence of Abeliophyllum distichum Nakai (Oleaceae) cultivar Ok Hwang 1 Ho, which is Korean endemic species, was recently sequenced to understand its characteristics. Acteoside is one of major useful compounds presenting various activities, and its several proposed biochemical pathways were reviewed and integrated to make precise biochemical pathway. Utilizing MetaPre-AITM which was developed for predicting secondary metabolites based on whole genome with the precise biochemical pathway of acteoside and the InfoBoss Pathway Database, we successfully rescued all enzymes involved in this pathway from the genome sequences, presenting that A. distichum cultivar Ok Hwang 1 Ho may produce acteoside. High-performance liquid chromatography result displayed that callus of A. distichum cultivar Ok Hwang 1 Ho contained acteoside as well as isoacteoside which may be derived from acteoside. Taken together, we successfully showed that MetaPre-AITM can predict secondary metabolite from plant whole genomes. In addition, this method will be efficient to predict secondary metabolites of many plant species because DNA can be analyzed more stability than chemical compounds.

Embryo, Seed coat and Pericarp Development in Abeliophyllum distichum Nakai (Oleaceae): A Rare and Endemic Plant of Korea

  • Ghimire, Balkrishna;Jeong, Mi Jin;Choi, Go Eun;Lee, Hayan;Lee, Kyung Mee;Lee, Cheul Ho;Suh, Gang Uk
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.350-356
    • /
    • 2015
  • Abeliophyllum distichum is a monotypic taxon of Oleaceae and endemic to Korea. A comprehensive study on embryogeny and fruit and seed coat ontogeny in Abeliophyllum was carried out via microtome and light microscopy. The fertilization occurs during mid– to late April and embryo matures by early July. The embryo development follows the general fashion from globular embryo – transition embryo – heart shaped embryo – torpedo embryo – walking-stick embryo to mature embryo. The pericarp clearly differentiates into three histological zones: exocarp, mesocarp, and endocarp. The young seed comprises 10-12 cells thick seed coat and the mature seed coat comprises an exotesta, 6-8 mesotesta and an endotesta. Any crystals, phenolic-like compounds, idioblasts, and the sclereids are not found in pericarp as well as seed coat. An overall development confirms Solanade type of embryogenesis in Abeliophyllum. The endocarp becomes more prominent in mature fruit and all the layers of endocarp are highly lignified. On the basis of mechanical layer the seed coat is of exotestal type.