References
- D. K. Kim & J. H. Kim. (2011). Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences. Journal of plant research, 124(3), 339-347. DOI : 10.1007/s10265-010-0383-9
- Y. H. Ha, C. Kim, K. Choi & J. H. Kim. (2018). Molecular phylogeny and dating of Forsythieae (Oleaceae) provide insight into the Miocene history of Eurasian temperate shrubs. Frontiers in plant science, 9, 99. DOI : 10.3389/fpls.2018.00099
- J. Min et al. (2019). The complete chloroplast genome of a new candidate cultivar, Sang Jae, of Abeliophyllum distichum Nakai (Oleaceae): initial step of A. distichum intraspecies variations atlas. Mitochondrial DNA Part B, 4(2), 3716-3718. DOI : 10.1080/23802359.2019.1679678
- J. Park, Y. Kim, H. Xi, T. Jang & J. H. Park. (2019). The complete chloroplast genome of Abeliophyllum distichum Nakai (Oleaceae), cultivar Ok Hwang 1ho: insights of cultivar specific variations of A. distichum. Mitochondrial DNA Part B, 4(1), 1640-1642. DOI : 10.1080/23802359.2019.1605851
- J. Park et al. (2019). The complete chloroplast genome of a new candidate cultivar, Dae Ryun, of Abeliophyllum distichum Nakai (Oleaceae). Mitochondrial DNA Part B, 4(2), 3713-3715.DOI : 10.1080/23802359.2019.1679676
- H. W. Kim, H. L. Lee, D. K. Lee & K. J. Kim. (2016). Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondrial DNA Part B, 1(1), 596-598. DOI : 10.1080/23802359.2016.1202741
- M. Buck & C. Hamilton. (2011). The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Review of European Community & International Environmental Law, 20(1), 47-61. DOI : 10.1111/j.1467-9388.2011.00703.x
- H. T. Shin, M. H. Yi, Y. S. Kim, B. C. Lee & J. W. Yoon. (2010). Recently augmented natural habitats of Forsythia koreana (Rehder) Nakai and Abeliophyllum distichum Nakai in Korea. Korean Journal of Plant Taxonomy, 40(4), 274-277. DOI : 10.11110/kjpt.2010.40.4.274
- J. H. You & C. H. Lee. (2005). Analysis on Herbaceous Communities and Flora around Abeliophyllum distichum Habitats. Korean Journal of Plant Resources, 18(2), 315-324.
- J. H. Shin, J. W. Son & J. J. Lee. (2016). A Literature review on the Aeliophyllum distichum Nakai. Proc Korean Soc Environ Ecol Con, 26(1), 61.
- H. Y. Lee, T. G. Kim & C. H. Oh. (2014). Recently Augmented natural habitat of Abeliophyllum distichum Nakai in Yeoju-si, Gyunggi-do, Korea. Korean Journal of Environment and Ecology, 28(1), 62-70. DOI : 10.13047/KJEE.2014.28.1.62
- H. M. Li, J. K. Kim, J. M. Jang, C. B. Cui & S. S. Lim. (2013). Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Archives of pharmacal research, 36(9), 1104-1112.DOI : 10.1007/s12272-013-0127-1
- H. Oh et al. (2003). Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytotherapy Research, 17(7), 811-813. DOI : 10.1002/ptr.1199
- G. H. Park et al. (2014). The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. BMC complementary and alternative medicine, 14(1), 487. DOI : 10.1186/1472-6882-14-487
-
J. W. Lee & Y. J. Kang. (2018). Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-
${\kappa}B$ Pathway in Raw264. 7 Cells. Korean J Plant Res., 31(3), 202-210. DOI : 10.7732/kjpr.2018.31.3.202 - J. Ahn & J. H. Park. (2013). Effects of Abeliophyllum distichum Nakai flower extracts on antioxidative activities and inhibition of DNA damage. Korean Journal of Plant Resources, 26(3), 355-361. DOI : 10.7732/kjpr.2013.26.3.355
- J. H. Choi et al. (2017). Polyphenolic compounds, antioxidant and anti-inflammatory effects of Abeliophyllum distichum Nakai extract. J Appl Bot Food Qual, 90, 266-273. DOI : 10.5073/JABFQ.2017.090.033
- N. Y. Kim & H. Y. Lee. (2015). Effect of antioxidant and skin whitening of ethanol extracts from ultrasonic pretreated Abeliophyllum distichum Nakai. Korean Journal of Medicinal Crop Science, 23(2), 155-160. DOI : 10.7783/KJMCS.2015.23.2.155
- S. J. Chang, N. B. Jeon, J. W. Park, T. W. Jang, J. B. Jeong & J. H. Park. (2018). Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves. Korean J. Food Preserv., 25(1), 27-35. DOI : 10.11002/kjfp.2018.25.1.27
- T. W. Jang & J. H. Park. (2017). Antioxidative activities and whitening effects of ethyl acetate fractions from the immature seeds of Abeliophyllum distichum. J. Life Sci, 27(5), 536-544. DOI : 10.5352/JLS.2017.27.5.536
- T. W. Jang & J. H. Park. (2018). Antioxidant activity and inhibitory effects on oxidative DNA damage of callus from Abeliophyllum distichum Nakai. Korean Journal of Plant Resources, 31(3), 228-236. DOI : 10.7732/kjpr.2018.31.3.228
- S. Y. Nam et al. (2015). Anti-inflammatory effects of isoacteoside from Abeliophyllum distichum. Immunopharmacology and immunotoxicology, 37(3), 258-264. DOI : 10.3109/08923973.2015.1026604
- T. W. Jang et al. (2018). Whitening activity of Abeliophyllum distichum Nakai leaves according to the ratio of prethanol A in the extracts. Korean Journal of Plant Resources, 31(6), 667-674. DOI : 10.7732/kjpr.2018.31.6.667
- F. Denoeud et al. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. science, 345(6201), 1181-1184. DOI : 10.1126/science.1255274
- E. H. Xia, H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim & H. Huang. (2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular plant, 10(6), 866-877. DOI : 10.1016/j.molp.2017.04.002
- P. Sarkhail et al. (2014). Quantification of verbascoside in medicinal species of Phlomis and their genetic relationships. DARU Journal of Pharmaceutical Sciences, 22(1), 32. DOI : 10.1186/2008-2231-22-32
- J. Schlauer J. Budzianowski, K. Kukulczanka & L. Ratajczak. (2004). Acteoside and related phenylethanoid glycosides in Byblis liniflora Salisb. plants propagated in vitro and its systematic significance. Acta Societatis Botanicorum Poloniae, 73(1). DOI : 10.5586/asbp.2004.002
- L. N. Gvazava, & V. S. Kikoladze. (2007). Verbascoside from Verbascum phlomoides. Chemistry of Natural Compounds, 43(6), 710-711. DOI : 10.1007/s10600-007-0240-9
- L. Speranza et al. (2009). Anti-inflammatory properties of the plant Verbascum mallophorum. Journal of biological regulators and homeostatic agents, 23(3), 189-195.
- M. Murai, Y. Tamayama & S. Nishibe. (1995). Phenylethanoids in the Herb of Plantago lanceolata and Inhibitory Effect on Arachidonic Acid-Induced Mouse Ear Edema1. Planta Medica, 61(5), 479-480. DOI : 10.1055/s-2006-958143
- K. Chathuranga et al. (2019). Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts in vitro and in vivo. Viruses, 11(7), 604. DOI : 10.3390/v11070604
- F. Wang et al. (2017). Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science, 8, 787. DOI : 10.3389/fpls.2017.00787
- X. M. Peng, L. Gao, S. X. Huo, X. M. Liu & M. Yan. (2015). The mechanism of memory enhancement of acteoside (verbascoside) in the senescent mouse model induced by a combination of d-gal and AlCl3. Phytotherapy Research, 29(8), 1137-1144. DOI : 10.1002/ptr.5358
- H. Q. Wang, Y. X. Xu & C. Q. Zhu. (2012). Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotoxicity research, 21(4), 368-378. DOI : 10.1007/s12640-011-9292-5
- T. O. Elufioye, T. I. Berida & S. Habtemariam. (2017). Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evidence-Based Complementary and Alternative Medicine, 2017. DOI : 10.1155/2017/3574012
- J. H. Lee et al. (2006). The effect of acteoside on histamine release and arachidonic acid release in RBL-2H3 mast cells. Archives of pharmacal research, 29(6), 508. DOI : 10.1007/BF02969425
- K. H. Kim, S. Kim, M. Y. Jung, I. H. Ham & W. K. Whang. (2009). Anti-inflammatory phenylpropanoid glycosides from Clerodendron trichotomum leaves. Archives of pharmacal research, 32(1), 7-13. DOI : 10.1007/s12272-009-1112-6
- T. Ohno, M. Inoue, Y. Ogihara & I. Saracoglu. (2002). Antimetastatic activity of acteoside, a phenylethanoid glycoside. Biological and Pharmaceutical Bulletin, 25(5), 666-668. DOI : 10.1248/bpb.25.666
- K. H. Kang, S. K. Jang, B. K. Kim & M. K. Park. (1994). Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Archives of pharmacal research, 17(6), 470. DOI : 10.1007/BF02979128
- J. Molnar et al. (1989). Antimicrobial and immunomodulating effects of some phenolic glycosides. Acta Microbiologica Hungarica, 36(4), 425-432.
- J. Zivkovic et al. (2014). Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. journal of functional foods, 9, 192-201. DOI : 10.1016/j.jff.2014.04.024
- P. Jones et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. DOI : 10.1093/bioinformatics/btu031
- A. Dalkiran et al. (2018). ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 19(1), 1-13. DOI : 10.1186/s12859-018-2368-y
- Y. Li et al. (2018). DEEPre: sequence-based enzyme EC number prediction by deep learning. Bioinformatics, 34(5), 760-769. DOI : 10.1093/bioinformatics/btx680
- A. Reyes-Martinez, J. R. Valle-Aguilera, M. Antunes-Ricardo, J. Gutierrez-Uribe, C. Gonzalez & M. del Socorro Santos-Diaz. (2019). Callus from Pyrostegia venusta (Ker Gawl.) Miers: a source of phenylethanoid glycosides with vasorelaxant activities. Plant Cell, Tissue and Organ Culture (PCTOC), 139(1), 119-129. DOI : 10.1007/s11240-019-01669-5
- Y. Zhou, X. Wang, W. Wang & H. Duan. (2016). De novo transcriptome sequencing-based discovery and expression analyses of verbascoside biosynthesis-associated genes in Rehmannia glutinosa tuberous roots. Molecular breeding, 36(10), 139. DOI : 10.1007/s11032-016-0548-x
- A. Kulma & J. Szopa. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433-440. DOI : 10.1016/j.plantsci.2006.10.013
- M. Cercos, G. Soler, D. J. Iglesias, J. Gadea, J. Forment & M. Talon. (2006). Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant molecular biology, 62(4-5), 513-527. DOI : 10.1007/s11103-006-9037-7
- X. Li, Y. He, C. H. Ruiz, M. Koenig & M. D. Cameron. (2009). Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metabolism and Disposition, 37(6), 1242-1250. DOI : 10.1124/dmd.108.025932
- V. Kumar, H. Sood, M. Sharma & R. S. Chauhan. (2013). A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochemical Analysis, 24(6), 598-602. DOI : 10.1002/pca.2437
- C. M. Fraser & C. Chapple. (2011). The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists, 9, e0152. DOI : 10.1199/tab.0152
- J. J. Xu, X. Fang, C. Y. Li, Q. Zhao, C. Martin, X. Y. Chen & L. Yang. (2018). Characterization of Arabidopsis thaliana hydroxyphenylpyruvate reductases in the tyrosine conversion pathway. Frontiers in plant science, 9, 1305. DOI : 10.3389/fpls.2018.01305
- M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato & K. Morishima. (2016). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research, 45(D1), D353-D361. DOI : 10.1093/nar/gkw1092
- M. Johnson, L. Zaretskaya, I. Raytselis, Y. Merezhuk, S. McGinnis & T. L. Madden. (2008). NCBI BLAST: a better web interface. Nucleic acids research, 36(suppl_2), W5-W9. DOI : 10.1093/nar/gkn201
- B. Siminszky. (2006). Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews, 5(2-3), 445-458. DOI : 10.1007/s11101-006-9011-7
- M. A. Schuler. (1996). Plant cytochrome P450 monooxygenases. Critical reviews in plant sciences, 15(3), 235-284. DOI : 10.1080/07352689609701942
- J. Park et al. (2008). Fungal cytochrome P450 database. BMC genomics, 9(1), 402. DOI : 10.1186/1471-2164-9-402
- M. L. Metzker. (2010). Sequencing technologies-the next generation. Nature reviews genetics, 11(1), 31. DOI : 10.1038/nrg2626
- S. Goodwin, J. D. McPherson & W. R. McCombie. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333. DOI : 10.1038/nrg.2016.49
- C. Bleidorn. (2016). Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity, 14(1), 1-8. DOI : 10.1080/14772000.2015.1099575