DOI QR코드

DOI QR Code

Prediction and Identification of Biochemical Pathway of Acteoside from Whole Genome Sequences of Abeliophyllum Distichum Nakai, Cultivar Ok Hwang 1ho

미선나무 품종 옥황 1호의 유전체를 활용한 Acteoside 생화학 합성과정 예측 및 확인

  • Park, Jaeho (Department of Pharmaceutical Science, JungWon University) ;
  • Xi, Hong (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Han, Jiyun (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Lee, Jeongmin (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Kim, Yongsung (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Lee, Jun-mi (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Son, Janghyuk (InfoBoss Co., Ltd. & InfoBoss Research Center) ;
  • Ahn, Joungjwa (Department of Food Science & Technology, JungWon University) ;
  • Jang, Taewon (Department of Medicinal Plant Resources, Andong National University) ;
  • Choi, Jisoo (Department of Pharmaceutical Science, JungWon University) ;
  • Park, Jongsun (InfoBoss Co., Ltd. & InfoBoss Research Center)
  • 박재호 (중원대학교 제약공학과) ;
  • 시홍 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 한지윤 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 이정민 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 김용성 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 이준미 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 손장혁 (인포보스 주식회사 및 인포보스 기업부설연구소) ;
  • 안정좌 (중원대학교 식품공학과) ;
  • 장태원 (안동대학교 생약자원개발학과) ;
  • 최지수 (중원대학교 제약공학과) ;
  • 박종선 (인포보스 주식회사 및 인포보스 기업부설연구소)
  • Received : 2020.01.06
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

Whole genome sequence of Abeliophyllum distichum Nakai (Oleaceae) cultivar Ok Hwang 1 Ho, which is Korean endemic species, was recently sequenced to understand its characteristics. Acteoside is one of major useful compounds presenting various activities, and its several proposed biochemical pathways were reviewed and integrated to make precise biochemical pathway. Utilizing MetaPre-AITM which was developed for predicting secondary metabolites based on whole genome with the precise biochemical pathway of acteoside and the InfoBoss Pathway Database, we successfully rescued all enzymes involved in this pathway from the genome sequences, presenting that A. distichum cultivar Ok Hwang 1 Ho may produce acteoside. High-performance liquid chromatography result displayed that callus of A. distichum cultivar Ok Hwang 1 Ho contained acteoside as well as isoacteoside which may be derived from acteoside. Taken together, we successfully showed that MetaPre-AITM can predict secondary metabolite from plant whole genomes. In addition, this method will be efficient to predict secondary metabolites of many plant species because DNA can be analyzed more stability than chemical compounds.

최근에 한국 고유종인 미선나무 (Abeliophyllum distichum Nakai; Oleaceae) 품종 옥황1호의 유전체가 성공적으로 해독되었다. Acteoside는 다양한 활성을 가지는 물질이며, 여러개의 생화학합성과정이 제시되어왔고, 이들을 통합 검토하여 정확한 생화학합성과정을 완성하였다. 유전체 데이터로부터 2차대사산물을 예측할 수 있는 MetaPre-AITM와 정확한 acteoside 생화학합성과정, InfoBoss Pathway Database를 활용하여, acteoside에 관여하는 모든 효소의 유전자를 옥황1호 유전체로부터 성공적으로 확인하였다. 이는 옥황1호는 acteoside 물질을 생산할 수 있는 가능성이 있음을 의미한다. 이에 고성능액체크로마토그래피를 사용하여 옥황1호의 캘러스 세포를 분석하여 acteoside과 이의 유도체인 isoacteoside를 확인하였다. 본 연구는 MetaPre-AITM은 유전체로부터 2차대사산물을 성공적으로 예측하였다. 이 방법은 화학물질보다 안정적인 DNA를 분석하여 2차 대사산물을 예측하는 효율적인 방법이 될 것이다.

Keywords

References

  1. D. K. Kim & J. H. Kim. (2011). Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences. Journal of plant research, 124(3), 339-347. DOI : 10.1007/s10265-010-0383-9
  2. Y. H. Ha, C. Kim, K. Choi & J. H. Kim. (2018). Molecular phylogeny and dating of Forsythieae (Oleaceae) provide insight into the Miocene history of Eurasian temperate shrubs. Frontiers in plant science, 9, 99. DOI : 10.3389/fpls.2018.00099
  3. J. Min et al. (2019). The complete chloroplast genome of a new candidate cultivar, Sang Jae, of Abeliophyllum distichum Nakai (Oleaceae): initial step of A. distichum intraspecies variations atlas. Mitochondrial DNA Part B, 4(2), 3716-3718. DOI : 10.1080/23802359.2019.1679678
  4. J. Park, Y. Kim, H. Xi, T. Jang & J. H. Park. (2019). The complete chloroplast genome of Abeliophyllum distichum Nakai (Oleaceae), cultivar Ok Hwang 1ho: insights of cultivar specific variations of A. distichum. Mitochondrial DNA Part B, 4(1), 1640-1642. DOI : 10.1080/23802359.2019.1605851
  5. J. Park et al. (2019). The complete chloroplast genome of a new candidate cultivar, Dae Ryun, of Abeliophyllum distichum Nakai (Oleaceae). Mitochondrial DNA Part B, 4(2), 3713-3715.DOI : 10.1080/23802359.2019.1679676
  6. H. W. Kim, H. L. Lee, D. K. Lee & K. J. Kim. (2016). Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondrial DNA Part B, 1(1), 596-598. DOI : 10.1080/23802359.2016.1202741
  7. M. Buck & C. Hamilton. (2011). The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Review of European Community & International Environmental Law, 20(1), 47-61. DOI : 10.1111/j.1467-9388.2011.00703.x
  8. H. T. Shin, M. H. Yi, Y. S. Kim, B. C. Lee & J. W. Yoon. (2010). Recently augmented natural habitats of Forsythia koreana (Rehder) Nakai and Abeliophyllum distichum Nakai in Korea. Korean Journal of Plant Taxonomy, 40(4), 274-277. DOI : 10.11110/kjpt.2010.40.4.274
  9. J. H. You & C. H. Lee. (2005). Analysis on Herbaceous Communities and Flora around Abeliophyllum distichum Habitats. Korean Journal of Plant Resources, 18(2), 315-324.
  10. J. H. Shin, J. W. Son & J. J. Lee. (2016). A Literature review on the Aeliophyllum distichum Nakai. Proc Korean Soc Environ Ecol Con, 26(1), 61.
  11. H. Y. Lee, T. G. Kim & C. H. Oh. (2014). Recently Augmented natural habitat of Abeliophyllum distichum Nakai in Yeoju-si, Gyunggi-do, Korea. Korean Journal of Environment and Ecology, 28(1), 62-70. DOI : 10.13047/KJEE.2014.28.1.62
  12. H. M. Li, J. K. Kim, J. M. Jang, C. B. Cui & S. S. Lim. (2013). Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Archives of pharmacal research, 36(9), 1104-1112.DOI : 10.1007/s12272-013-0127-1
  13. H. Oh et al. (2003). Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytotherapy Research, 17(7), 811-813. DOI : 10.1002/ptr.1199
  14. G. H. Park et al. (2014). The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. BMC complementary and alternative medicine, 14(1), 487. DOI : 10.1186/1472-6882-14-487
  15. J. W. Lee & Y. J. Kang. (2018). Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-${\kappa}B$ Pathway in Raw264. 7 Cells. Korean J Plant Res., 31(3), 202-210. DOI : 10.7732/kjpr.2018.31.3.202
  16. J. Ahn & J. H. Park. (2013). Effects of Abeliophyllum distichum Nakai flower extracts on antioxidative activities and inhibition of DNA damage. Korean Journal of Plant Resources, 26(3), 355-361. DOI : 10.7732/kjpr.2013.26.3.355
  17. J. H. Choi et al. (2017). Polyphenolic compounds, antioxidant and anti-inflammatory effects of Abeliophyllum distichum Nakai extract. J Appl Bot Food Qual, 90, 266-273. DOI : 10.5073/JABFQ.2017.090.033
  18. N. Y. Kim & H. Y. Lee. (2015). Effect of antioxidant and skin whitening of ethanol extracts from ultrasonic pretreated Abeliophyllum distichum Nakai. Korean Journal of Medicinal Crop Science, 23(2), 155-160. DOI : 10.7783/KJMCS.2015.23.2.155
  19. S. J. Chang, N. B. Jeon, J. W. Park, T. W. Jang, J. B. Jeong & J. H. Park. (2018). Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves. Korean J. Food Preserv., 25(1), 27-35. DOI : 10.11002/kjfp.2018.25.1.27
  20. T. W. Jang & J. H. Park. (2017). Antioxidative activities and whitening effects of ethyl acetate fractions from the immature seeds of Abeliophyllum distichum. J. Life Sci, 27(5), 536-544. DOI : 10.5352/JLS.2017.27.5.536
  21. T. W. Jang & J. H. Park. (2018). Antioxidant activity and inhibitory effects on oxidative DNA damage of callus from Abeliophyllum distichum Nakai. Korean Journal of Plant Resources, 31(3), 228-236. DOI : 10.7732/kjpr.2018.31.3.228
  22. S. Y. Nam et al. (2015). Anti-inflammatory effects of isoacteoside from Abeliophyllum distichum. Immunopharmacology and immunotoxicology, 37(3), 258-264. DOI : 10.3109/08923973.2015.1026604
  23. T. W. Jang et al. (2018). Whitening activity of Abeliophyllum distichum Nakai leaves according to the ratio of prethanol A in the extracts. Korean Journal of Plant Resources, 31(6), 667-674. DOI : 10.7732/kjpr.2018.31.6.667
  24. F. Denoeud et al. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. science, 345(6201), 1181-1184. DOI : 10.1126/science.1255274
  25. E. H. Xia, H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim & H. Huang. (2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular plant, 10(6), 866-877. DOI : 10.1016/j.molp.2017.04.002
  26. P. Sarkhail et al. (2014). Quantification of verbascoside in medicinal species of Phlomis and their genetic relationships. DARU Journal of Pharmaceutical Sciences, 22(1), 32. DOI : 10.1186/2008-2231-22-32
  27. J. Schlauer J. Budzianowski, K. Kukulczanka & L. Ratajczak. (2004). Acteoside and related phenylethanoid glycosides in Byblis liniflora Salisb. plants propagated in vitro and its systematic significance. Acta Societatis Botanicorum Poloniae, 73(1). DOI : 10.5586/asbp.2004.002
  28. L. N. Gvazava, & V. S. Kikoladze. (2007). Verbascoside from Verbascum phlomoides. Chemistry of Natural Compounds, 43(6), 710-711. DOI : 10.1007/s10600-007-0240-9
  29. L. Speranza et al. (2009). Anti-inflammatory properties of the plant Verbascum mallophorum. Journal of biological regulators and homeostatic agents, 23(3), 189-195.
  30. M. Murai, Y. Tamayama & S. Nishibe. (1995). Phenylethanoids in the Herb of Plantago lanceolata and Inhibitory Effect on Arachidonic Acid-Induced Mouse Ear Edema1. Planta Medica, 61(5), 479-480. DOI : 10.1055/s-2006-958143
  31. K. Chathuranga et al. (2019). Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts in vitro and in vivo. Viruses, 11(7), 604. DOI : 10.3390/v11070604
  32. F. Wang et al. (2017). Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science, 8, 787. DOI : 10.3389/fpls.2017.00787
  33. X. M. Peng, L. Gao, S. X. Huo, X. M. Liu & M. Yan. (2015). The mechanism of memory enhancement of acteoside (verbascoside) in the senescent mouse model induced by a combination of d-gal and AlCl3. Phytotherapy Research, 29(8), 1137-1144. DOI : 10.1002/ptr.5358
  34. H. Q. Wang, Y. X. Xu & C. Q. Zhu. (2012). Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotoxicity research, 21(4), 368-378. DOI : 10.1007/s12640-011-9292-5
  35. T. O. Elufioye, T. I. Berida & S. Habtemariam. (2017). Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evidence-Based Complementary and Alternative Medicine, 2017. DOI : 10.1155/2017/3574012
  36. J. H. Lee et al. (2006). The effect of acteoside on histamine release and arachidonic acid release in RBL-2H3 mast cells. Archives of pharmacal research, 29(6), 508. DOI : 10.1007/BF02969425
  37. K. H. Kim, S. Kim, M. Y. Jung, I. H. Ham & W. K. Whang. (2009). Anti-inflammatory phenylpropanoid glycosides from Clerodendron trichotomum leaves. Archives of pharmacal research, 32(1), 7-13. DOI : 10.1007/s12272-009-1112-6
  38. T. Ohno, M. Inoue, Y. Ogihara & I. Saracoglu. (2002). Antimetastatic activity of acteoside, a phenylethanoid glycoside. Biological and Pharmaceutical Bulletin, 25(5), 666-668. DOI : 10.1248/bpb.25.666
  39. K. H. Kang, S. K. Jang, B. K. Kim & M. K. Park. (1994). Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Archives of pharmacal research, 17(6), 470. DOI : 10.1007/BF02979128
  40. J. Molnar et al. (1989). Antimicrobial and immunomodulating effects of some phenolic glycosides. Acta Microbiologica Hungarica, 36(4), 425-432.
  41. J. Zivkovic et al. (2014). Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. journal of functional foods, 9, 192-201. DOI : 10.1016/j.jff.2014.04.024
  42. P. Jones et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. DOI : 10.1093/bioinformatics/btu031
  43. A. Dalkiran et al. (2018). ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 19(1), 1-13. DOI : 10.1186/s12859-018-2368-y
  44. Y. Li et al. (2018). DEEPre: sequence-based enzyme EC number prediction by deep learning. Bioinformatics, 34(5), 760-769. DOI : 10.1093/bioinformatics/btx680
  45. A. Reyes-Martinez, J. R. Valle-Aguilera, M. Antunes-Ricardo, J. Gutierrez-Uribe, C. Gonzalez & M. del Socorro Santos-Diaz. (2019). Callus from Pyrostegia venusta (Ker Gawl.) Miers: a source of phenylethanoid glycosides with vasorelaxant activities. Plant Cell, Tissue and Organ Culture (PCTOC), 139(1), 119-129. DOI : 10.1007/s11240-019-01669-5
  46. Y. Zhou, X. Wang, W. Wang & H. Duan. (2016). De novo transcriptome sequencing-based discovery and expression analyses of verbascoside biosynthesis-associated genes in Rehmannia glutinosa tuberous roots. Molecular breeding, 36(10), 139. DOI : 10.1007/s11032-016-0548-x
  47. A. Kulma & J. Szopa. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433-440. DOI : 10.1016/j.plantsci.2006.10.013
  48. M. Cercos, G. Soler, D. J. Iglesias, J. Gadea, J. Forment & M. Talon. (2006). Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant molecular biology, 62(4-5), 513-527. DOI : 10.1007/s11103-006-9037-7
  49. X. Li, Y. He, C. H. Ruiz, M. Koenig & M. D. Cameron. (2009). Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metabolism and Disposition, 37(6), 1242-1250. DOI : 10.1124/dmd.108.025932
  50. V. Kumar, H. Sood, M. Sharma & R. S. Chauhan. (2013). A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochemical Analysis, 24(6), 598-602. DOI : 10.1002/pca.2437
  51. C. M. Fraser & C. Chapple. (2011). The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists, 9, e0152. DOI : 10.1199/tab.0152
  52. J. J. Xu, X. Fang, C. Y. Li, Q. Zhao, C. Martin, X. Y. Chen & L. Yang. (2018). Characterization of Arabidopsis thaliana hydroxyphenylpyruvate reductases in the tyrosine conversion pathway. Frontiers in plant science, 9, 1305. DOI : 10.3389/fpls.2018.01305
  53. M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato & K. Morishima. (2016). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research, 45(D1), D353-D361. DOI : 10.1093/nar/gkw1092
  54. M. Johnson, L. Zaretskaya, I. Raytselis, Y. Merezhuk, S. McGinnis & T. L. Madden. (2008). NCBI BLAST: a better web interface. Nucleic acids research, 36(suppl_2), W5-W9. DOI : 10.1093/nar/gkn201
  55. B. Siminszky. (2006). Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews, 5(2-3), 445-458. DOI : 10.1007/s11101-006-9011-7
  56. M. A. Schuler. (1996). Plant cytochrome P450 monooxygenases. Critical reviews in plant sciences, 15(3), 235-284. DOI : 10.1080/07352689609701942
  57. J. Park et al. (2008). Fungal cytochrome P450 database. BMC genomics, 9(1), 402. DOI : 10.1186/1471-2164-9-402
  58. M. L. Metzker. (2010). Sequencing technologies-the next generation. Nature reviews genetics, 11(1), 31. DOI : 10.1038/nrg2626
  59. S. Goodwin, J. D. McPherson & W. R. McCombie. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333. DOI : 10.1038/nrg.2016.49
  60. C. Bleidorn. (2016). Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity, 14(1), 1-8. DOI : 10.1080/14772000.2015.1099575