Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.03.076

Prediction and Identification of Biochemical Pathway of Acteoside from Whole Genome Sequences of Abeliophyllum Distichum Nakai, Cultivar Ok Hwang 1ho  

Park, Jaeho (Department of Pharmaceutical Science, JungWon University)
Xi, Hong (InfoBoss Co., Ltd. & InfoBoss Research Center)
Han, Jiyun (InfoBoss Co., Ltd. & InfoBoss Research Center)
Lee, Jeongmin (InfoBoss Co., Ltd. & InfoBoss Research Center)
Kim, Yongsung (InfoBoss Co., Ltd. & InfoBoss Research Center)
Lee, Jun-mi (InfoBoss Co., Ltd. & InfoBoss Research Center)
Son, Janghyuk (InfoBoss Co., Ltd. & InfoBoss Research Center)
Ahn, Joungjwa (Department of Food Science & Technology, JungWon University)
Jang, Taewon (Department of Medicinal Plant Resources, Andong National University)
Choi, Jisoo (Department of Pharmaceutical Science, JungWon University)
Park, Jongsun (InfoBoss Co., Ltd. & InfoBoss Research Center)
Publication Information
Journal of Convergence for Information Technology / v.10, no.3, 2020 , pp. 76-91 More about this Journal
Abstract
Whole genome sequence of Abeliophyllum distichum Nakai (Oleaceae) cultivar Ok Hwang 1 Ho, which is Korean endemic species, was recently sequenced to understand its characteristics. Acteoside is one of major useful compounds presenting various activities, and its several proposed biochemical pathways were reviewed and integrated to make precise biochemical pathway. Utilizing MetaPre-AITM which was developed for predicting secondary metabolites based on whole genome with the precise biochemical pathway of acteoside and the InfoBoss Pathway Database, we successfully rescued all enzymes involved in this pathway from the genome sequences, presenting that A. distichum cultivar Ok Hwang 1 Ho may produce acteoside. High-performance liquid chromatography result displayed that callus of A. distichum cultivar Ok Hwang 1 Ho contained acteoside as well as isoacteoside which may be derived from acteoside. Taken together, we successfully showed that MetaPre-AITM can predict secondary metabolite from plant whole genomes. In addition, this method will be efficient to predict secondary metabolites of many plant species because DNA can be analyzed more stability than chemical compounds.
Keywords
Acteoside; biochemical pathway; Whole genome; $MetaPre-AI^{TM}$; InfoBoss Pathway Database; Abeliophyllum distichum; cultivar Ok Hwang 1ho;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 A. Reyes-Martinez, J. R. Valle-Aguilera, M. Antunes-Ricardo, J. Gutierrez-Uribe, C. Gonzalez & M. del Socorro Santos-Diaz. (2019). Callus from Pyrostegia venusta (Ker Gawl.) Miers: a source of phenylethanoid glycosides with vasorelaxant activities. Plant Cell, Tissue and Organ Culture (PCTOC), 139(1), 119-129. DOI : 10.1007/s11240-019-01669-5   DOI
2 Y. Zhou, X. Wang, W. Wang & H. Duan. (2016). De novo transcriptome sequencing-based discovery and expression analyses of verbascoside biosynthesis-associated genes in Rehmannia glutinosa tuberous roots. Molecular breeding, 36(10), 139. DOI : 10.1007/s11032-016-0548-x   DOI
3 A. Kulma & J. Szopa. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433-440. DOI : 10.1016/j.plantsci.2006.10.013   DOI
4 M. Cercos, G. Soler, D. J. Iglesias, J. Gadea, J. Forment & M. Talon. (2006). Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant molecular biology, 62(4-5), 513-527. DOI : 10.1007/s11103-006-9037-7   DOI
5 X. Li, Y. He, C. H. Ruiz, M. Koenig & M. D. Cameron. (2009). Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metabolism and Disposition, 37(6), 1242-1250. DOI : 10.1124/dmd.108.025932   DOI
6 V. Kumar, H. Sood, M. Sharma & R. S. Chauhan. (2013). A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochemical Analysis, 24(6), 598-602. DOI : 10.1002/pca.2437   DOI
7 C. M. Fraser & C. Chapple. (2011). The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists, 9, e0152. DOI : 10.1199/tab.0152   DOI
8 M. Johnson, L. Zaretskaya, I. Raytselis, Y. Merezhuk, S. McGinnis & T. L. Madden. (2008). NCBI BLAST: a better web interface. Nucleic acids research, 36(suppl_2), W5-W9. DOI : 10.1093/nar/gkn201   DOI
9 J. J. Xu, X. Fang, C. Y. Li, Q. Zhao, C. Martin, X. Y. Chen & L. Yang. (2018). Characterization of Arabidopsis thaliana hydroxyphenylpyruvate reductases in the tyrosine conversion pathway. Frontiers in plant science, 9, 1305. DOI : 10.3389/fpls.2018.01305   DOI
10 M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato & K. Morishima. (2016). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research, 45(D1), D353-D361. DOI : 10.1093/nar/gkw1092
11 B. Siminszky. (2006). Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews, 5(2-3), 445-458. DOI : 10.1007/s11101-006-9011-7   DOI
12 M. A. Schuler. (1996). Plant cytochrome P450 monooxygenases. Critical reviews in plant sciences, 15(3), 235-284. DOI : 10.1080/07352689609701942   DOI
13 J. Park et al. (2008). Fungal cytochrome P450 database. BMC genomics, 9(1), 402. DOI : 10.1186/1471-2164-9-402   DOI
14 M. L. Metzker. (2010). Sequencing technologies-the next generation. Nature reviews genetics, 11(1), 31. DOI : 10.1038/nrg2626   DOI
15 S. Goodwin, J. D. McPherson & W. R. McCombie. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333. DOI : 10.1038/nrg.2016.49   DOI
16 J. Park, Y. Kim, H. Xi, T. Jang & J. H. Park. (2019). The complete chloroplast genome of Abeliophyllum distichum Nakai (Oleaceae), cultivar Ok Hwang 1ho: insights of cultivar specific variations of A. distichum. Mitochondrial DNA Part B, 4(1), 1640-1642. DOI : 10.1080/23802359.2019.1605851   DOI
17 C. Bleidorn. (2016). Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity, 14(1), 1-8. DOI : 10.1080/14772000.2015.1099575   DOI
18 D. K. Kim & J. H. Kim. (2011). Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences. Journal of plant research, 124(3), 339-347. DOI : 10.1007/s10265-010-0383-9   DOI
19 Y. H. Ha, C. Kim, K. Choi & J. H. Kim. (2018). Molecular phylogeny and dating of Forsythieae (Oleaceae) provide insight into the Miocene history of Eurasian temperate shrubs. Frontiers in plant science, 9, 99. DOI : 10.3389/fpls.2018.00099   DOI
20 J. Min et al. (2019). The complete chloroplast genome of a new candidate cultivar, Sang Jae, of Abeliophyllum distichum Nakai (Oleaceae): initial step of A. distichum intraspecies variations atlas. Mitochondrial DNA Part B, 4(2), 3716-3718. DOI : 10.1080/23802359.2019.1679678   DOI
21 J. Park et al. (2019). The complete chloroplast genome of a new candidate cultivar, Dae Ryun, of Abeliophyllum distichum Nakai (Oleaceae). Mitochondrial DNA Part B, 4(2), 3713-3715.DOI : 10.1080/23802359.2019.1679676   DOI
22 H. Y. Lee, T. G. Kim & C. H. Oh. (2014). Recently Augmented natural habitat of Abeliophyllum distichum Nakai in Yeoju-si, Gyunggi-do, Korea. Korean Journal of Environment and Ecology, 28(1), 62-70. DOI : 10.13047/KJEE.2014.28.1.62   DOI
23 H. W. Kim, H. L. Lee, D. K. Lee & K. J. Kim. (2016). Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondrial DNA Part B, 1(1), 596-598. DOI : 10.1080/23802359.2016.1202741   DOI
24 M. Buck & C. Hamilton. (2011). The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Review of European Community & International Environmental Law, 20(1), 47-61. DOI : 10.1111/j.1467-9388.2011.00703.x   DOI
25 H. T. Shin, M. H. Yi, Y. S. Kim, B. C. Lee & J. W. Yoon. (2010). Recently augmented natural habitats of Forsythia koreana (Rehder) Nakai and Abeliophyllum distichum Nakai in Korea. Korean Journal of Plant Taxonomy, 40(4), 274-277. DOI : 10.11110/kjpt.2010.40.4.274   DOI
26 J. H. You & C. H. Lee. (2005). Analysis on Herbaceous Communities and Flora around Abeliophyllum distichum Habitats. Korean Journal of Plant Resources, 18(2), 315-324.
27 J. H. Shin, J. W. Son & J. J. Lee. (2016). A Literature review on the Aeliophyllum distichum Nakai. Proc Korean Soc Environ Ecol Con, 26(1), 61.
28 H. M. Li, J. K. Kim, J. M. Jang, C. B. Cui & S. S. Lim. (2013). Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Archives of pharmacal research, 36(9), 1104-1112.DOI : 10.1007/s12272-013-0127-1   DOI
29 H. Oh et al. (2003). Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytotherapy Research, 17(7), 811-813. DOI : 10.1002/ptr.1199   DOI
30 G. H. Park et al. (2014). The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. BMC complementary and alternative medicine, 14(1), 487. DOI : 10.1186/1472-6882-14-487   DOI
31 J. W. Lee & Y. J. Kang. (2018). Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-${\kappa}B$ Pathway in Raw264. 7 Cells. Korean J Plant Res., 31(3), 202-210. DOI : 10.7732/kjpr.2018.31.3.202   DOI
32 J. Ahn & J. H. Park. (2013). Effects of Abeliophyllum distichum Nakai flower extracts on antioxidative activities and inhibition of DNA damage. Korean Journal of Plant Resources, 26(3), 355-361. DOI : 10.7732/kjpr.2013.26.3.355   DOI
33 T. W. Jang & J. H. Park. (2017). Antioxidative activities and whitening effects of ethyl acetate fractions from the immature seeds of Abeliophyllum distichum. J. Life Sci, 27(5), 536-544. DOI : 10.5352/JLS.2017.27.5.536   DOI
34 J. H. Choi et al. (2017). Polyphenolic compounds, antioxidant and anti-inflammatory effects of Abeliophyllum distichum Nakai extract. J Appl Bot Food Qual, 90, 266-273. DOI : 10.5073/JABFQ.2017.090.033
35 N. Y. Kim & H. Y. Lee. (2015). Effect of antioxidant and skin whitening of ethanol extracts from ultrasonic pretreated Abeliophyllum distichum Nakai. Korean Journal of Medicinal Crop Science, 23(2), 155-160. DOI : 10.7783/KJMCS.2015.23.2.155   DOI
36 S. J. Chang, N. B. Jeon, J. W. Park, T. W. Jang, J. B. Jeong & J. H. Park. (2018). Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves. Korean J. Food Preserv., 25(1), 27-35. DOI : 10.11002/kjfp.2018.25.1.27   DOI
37 T. W. Jang & J. H. Park. (2018). Antioxidant activity and inhibitory effects on oxidative DNA damage of callus from Abeliophyllum distichum Nakai. Korean Journal of Plant Resources, 31(3), 228-236. DOI : 10.7732/kjpr.2018.31.3.228   DOI
38 F. Denoeud et al. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. science, 345(6201), 1181-1184. DOI : 10.1126/science.1255274   DOI
39 S. Y. Nam et al. (2015). Anti-inflammatory effects of isoacteoside from Abeliophyllum distichum. Immunopharmacology and immunotoxicology, 37(3), 258-264. DOI : 10.3109/08923973.2015.1026604   DOI
40 T. W. Jang et al. (2018). Whitening activity of Abeliophyllum distichum Nakai leaves according to the ratio of prethanol A in the extracts. Korean Journal of Plant Resources, 31(6), 667-674. DOI : 10.7732/kjpr.2018.31.6.667   DOI
41 L. N. Gvazava, & V. S. Kikoladze. (2007). Verbascoside from Verbascum phlomoides. Chemistry of Natural Compounds, 43(6), 710-711. DOI : 10.1007/s10600-007-0240-9   DOI
42 E. H. Xia, H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim & H. Huang. (2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular plant, 10(6), 866-877. DOI : 10.1016/j.molp.2017.04.002   DOI
43 P. Sarkhail et al. (2014). Quantification of verbascoside in medicinal species of Phlomis and their genetic relationships. DARU Journal of Pharmaceutical Sciences, 22(1), 32. DOI : 10.1186/2008-2231-22-32   DOI
44 J. Schlauer J. Budzianowski, K. Kukulczanka & L. Ratajczak. (2004). Acteoside and related phenylethanoid glycosides in Byblis liniflora Salisb. plants propagated in vitro and its systematic significance. Acta Societatis Botanicorum Poloniae, 73(1). DOI : 10.5586/asbp.2004.002
45 L. Speranza et al. (2009). Anti-inflammatory properties of the plant Verbascum mallophorum. Journal of biological regulators and homeostatic agents, 23(3), 189-195.
46 H. Q. Wang, Y. X. Xu & C. Q. Zhu. (2012). Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotoxicity research, 21(4), 368-378. DOI : 10.1007/s12640-011-9292-5   DOI
47 M. Murai, Y. Tamayama & S. Nishibe. (1995). Phenylethanoids in the Herb of Plantago lanceolata and Inhibitory Effect on Arachidonic Acid-Induced Mouse Ear Edema1. Planta Medica, 61(5), 479-480. DOI : 10.1055/s-2006-958143   DOI
48 K. Chathuranga et al. (2019). Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts in vitro and in vivo. Viruses, 11(7), 604. DOI : 10.3390/v11070604   DOI
49 F. Wang et al. (2017). Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science, 8, 787. DOI : 10.3389/fpls.2017.00787   DOI
50 X. M. Peng, L. Gao, S. X. Huo, X. M. Liu & M. Yan. (2015). The mechanism of memory enhancement of acteoside (verbascoside) in the senescent mouse model induced by a combination of d-gal and AlCl3. Phytotherapy Research, 29(8), 1137-1144. DOI : 10.1002/ptr.5358   DOI
51 T. O. Elufioye, T. I. Berida & S. Habtemariam. (2017). Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evidence-Based Complementary and Alternative Medicine, 2017. DOI : 10.1155/2017/3574012
52 J. H. Lee et al. (2006). The effect of acteoside on histamine release and arachidonic acid release in RBL-2H3 mast cells. Archives of pharmacal research, 29(6), 508. DOI : 10.1007/BF02969425   DOI
53 J. Molnar et al. (1989). Antimicrobial and immunomodulating effects of some phenolic glycosides. Acta Microbiologica Hungarica, 36(4), 425-432.
54 K. H. Kim, S. Kim, M. Y. Jung, I. H. Ham & W. K. Whang. (2009). Anti-inflammatory phenylpropanoid glycosides from Clerodendron trichotomum leaves. Archives of pharmacal research, 32(1), 7-13. DOI : 10.1007/s12272-009-1112-6   DOI
55 T. Ohno, M. Inoue, Y. Ogihara & I. Saracoglu. (2002). Antimetastatic activity of acteoside, a phenylethanoid glycoside. Biological and Pharmaceutical Bulletin, 25(5), 666-668. DOI : 10.1248/bpb.25.666   DOI
56 K. H. Kang, S. K. Jang, B. K. Kim & M. K. Park. (1994). Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Archives of pharmacal research, 17(6), 470. DOI : 10.1007/BF02979128   DOI
57 J. Zivkovic et al. (2014). Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. journal of functional foods, 9, 192-201. DOI : 10.1016/j.jff.2014.04.024   DOI
58 Y. Li et al. (2018). DEEPre: sequence-based enzyme EC number prediction by deep learning. Bioinformatics, 34(5), 760-769. DOI : 10.1093/bioinformatics/btx680   DOI
59 P. Jones et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. DOI : 10.1093/bioinformatics/btu031   DOI
60 A. Dalkiran et al. (2018). ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 19(1), 1-13. DOI : 10.1186/s12859-018-2368-y   DOI