• Title/Summary/Keyword: AZO(ZnO:Al)

Search Result 214, Processing Time 0.024 seconds

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

Characterization of AZO thin films grown on various substrates by using facing target sputtering system

  • Lee, Chang-Hyeon;Son, Seon-Yeong;Bae, Gang;Lee, Chang-Gyu;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.123-123
    • /
    • 2015
  • Al doped ZnO(AZO) films as a transparent conductive oxide (TCO) electrode were deposited on glass, polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) at room temperature by a conventional rf-magneton sputtering (CMS) and a facing target sputtering (FTS) using Al2O3 and ZnO targets. In order to investigation of AZO properties, the structural, surface morphology, electrical, and optical characteristics of AZO films were respectively analyzed. The resistivities of AZO films using FTS system were $6.50{\times}10-4{\Omega}{\cdot}cm$ on glass, $7.0{\times}10-4{\Omega}{\cdot}cm$ on PEN, and $7.4{\times}10-4{\Omega}{\cdot}cm$ on PET substrates, while the values of AZO films using CMS system were $7.6{\times}10-4{\Omega}{\cdot}cm$ on glass, $1.20{\times}10-3{\Omega}{\cdot}cm$ on PEN, and $1.58{\times}10-3{\Omega}{\cdot}cm$ on PET substrates. The AZO-films deposited by FTS system showed uniform surface compared to those of the films by CMS system. We thought that the films deposited by FTS system had low stress due to bombardment of high energetic particles during CMS process, resulted in enhanced electrical conductivity and crystalline quality by highly c-axis preferred orientation and closely packed nano-crystalline of AZO films using FTS system.

  • PDF

Effect of Substrate Temperature on Electrical and Optical Properties of Al Doped ZnO Thin Films by Continuous Composition Spread

  • Jung, Keun;Lee, Jin-Ju;Choi, Won-Kook;Yoon, Seok-Jin;Choi, Ji-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • Al doped ZnO(AZO) thin films were deposited at different substrate temperatures by a continuous composition spread(CCS) method. Various compositions of Al doped ZnO thin films deposited at substrate temperatures between 0 and $250^{\circ}C$ were explored to find excellent electrical and optical properties. The AZO thin film deposited at $100^{\circ}C$ had the lowest resistivity, $9{\times}10^{-4}{\Omega}$ cm and its average transmittance at the 400 to 700 nm wavelength region was 92 %. Optimized composition of the AZO thin film which had the lowest resistivity and high transmittance was 3.13 wt% Al doped ZnO.

Enhancement of Electrical and Optical Properties of AZO Thin Film Fabricated by Magnetron Sputtering

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.168-168
    • /
    • 2012
  • Al doped ZnO (AZO)는 태양전지, 평판 디스플레이, OELD 등 광전자 소자에 적용되는 투명전도막용 재료인 ITO의 대체 재료로서 최근에 가장 각광받고 있는 물질이다. 하지만, $2.5{\times}10^{-4}{\Omega}{\cdot}cm$의 낮은 비저항과 90% 이상의 투과도를 갖는 ITO의 비해 AZO의 특성은 아직 부족한 상황이다. 수십 년간 많은 연구자들에 의해 다양한 제조 방법과 공정 조건들로 전기적, 광학적 특성을 향상시키기 위한 노력들이 진행되어 왔다. 하지만 실리콘 반도체와는 달리 II-VI족 물질의 정확한 근본적인 원리는 아직 불분명한 상태이다. 지금까지 AZO의 특성 향상의 원인을 결정립 크기, 주상구조의 우선 방위, 결정성, Zn-O 구조내의 산소 결핍 등의 메커니즘으로 설명해 왔다. 하지만, 본 연구에서는 지금까지 제안된 상기 요인의 변화 없이 전기적, 광학적 특성을 향상시키는 것이 짧은 열처리만으로도 가능했다. AZO 박막의 전기적, 광학적 특성에 큰 영향을 미치는 보다 근본적인 원인은 도핑 효율이다. ZnO 내에 도핑된 Al의 양보다 실제로로 활성화된 Al의 비율을 올리는 것이 중요하다. 본 연구에서 구조적, 조성적 변화 없이 도핑효율을 8.9%에서 66.7%까지 증가시켰으며, 이동도는 박막 표면의 및 결정립계 사이의 과잉산소를 줄임으로서 optical phonon scattering 감소를 통하여 증가시킬 수 있고, 이러한 과잉산소의 감소는 deep level emission을 감소시킴으로서 투과도 증가에도 영향을 준다. 본 연구에서 짧은 열처리를 통해 구조적 변화 없이 도핑효율의 증가만으로 $4.8{\times}10^{-4}{\Omega}{\cdot}cm$의 비저항과 90%의 투과도를 갖는 AZO 박막을 제조하였다.

  • PDF

Simultaneous Realization of Electromagnetic Shielding and Antibacterial Effect of Al Doped ZnO Thin Films onto Glass Substrate (유리 기판 위에 증착된 Al Doped ZnO 박막을 이용한 전자파 차폐 및 항균 특성의 동시 구현)

  • Choi, Hyung-Jin;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2016
  • In this study, we intended to achieve both antibacterial properties and electromagnetic shielding using the Al-doped ZnO (AZO) films. FTS (Facial Target Sputtering) magnetron sputtering was used for the AZO thin films instead of the conventional RF sputtering because the FTS sputtering could avoid the damage for the plasma as well as fabrication of thin films with a high quality. The 300-nm thick AZO thin films grown on glass substrate showed a resistivity of about $7{\times}10^{-4}{\Omega}-cm$ and a transmittance of about 90% at a wavelength of 550 nm. AZO thin films were investigated for the electromagnetic shielding effectiveness measured by 2-port network method at 1.5 ~ 3 GHz. The AZO (300 nm)/glass films showed an EMI shielding effectiveness of approximately 27 dB. An antibacterial effect was measured by the film attachment method (JIS Z 2801). The percent reductions of bacteria by AZO films were 99.99668% and 99.99999% against Staphylococcus aureus and Escherichia coli, respectively.

Properties of ZnO:Al thin film on variation of substrate temperature for display application

  • Keum, M.J.;Kim, H.W.;Cho, B.J.;Son, I.H.;Choi, M.G.;Lee, W.J.;Jang, K.W.;Kim, K.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1474-1476
    • /
    • 2005
  • ZnO:Al(AZO) has been investigated for the photovoltaic cell or TCO(Transparent Conductive Oxide) of the display, because it has good electrical and optical properties. In this study, the ZnO:Al(AZO) thin film prepared on variation of substrate temperature by FTS(Facing Targets Sputtering) system. In case of TCO, because resistivity and roughness values affect the lighting of the OLED, their factors are very important. Therefore, in this paper, the electrical and optical properties of the AZO thin film were investigated with the deposition conditions and its roughness was investigated on variation of the substrate temperature. In results, AZO thin film deposited with the transmittance over 80% and the resistivity was reduced from $1.36{\times}10^{-3}$ [O-cm] to $4{\times}10^{-4}$ [O-cm] with increasing the substrate temperature from R.T to $200[^{\circ}C]$. Especially, we could obtain the resistivity $4{\times}10^{-4}$ [O-cm] of AZO thin film prepared at working pressure 1[mTorr], input current 0.4[A] and substrate temperature $200[^{\circ}C]$.

  • PDF

A Study on the Properties of Al doped ZnO (AZO) Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 Al이 도핑 된 ZnO (AZO) 박막의 특성에 대한 연구)

  • Yun, Eui-Jung;Jung, Myung-Hee;Park, Nho-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.8-16
    • /
    • 2010
  • In this paper, we investigated the effects of $O_2$ fraction on the properties of Al-doped ZnO (AZO) thin films prepared by radio frequency (RF) magnetron sputtering. Hall, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements revealed that the p-type conductivity was exhibited for AZO films with an $O_2$ fraction of 0.9 while the n-type conductivity was observed for films with $O_2$ fractions in range of 0 - 0.6. PL and XPS also showed that the acceptor-like defects, such as zinc vacancies and oxygen interstitials, increased in films prepared by an $O_2$ fraction of 0.9, resulting in the p-type conductivity in the films. Hall results indicated that AZO films prepared by $O_2$ fractions in range of 0 - 0.6 can be used for electrode layers in the applications of transparent thin film transistor. We concluded from the X-ray diffraction analysis that worse crystallinity with a smaller grain size as well as higher tensile stress was observed in the films prepared by a higher $O_2$ fraction, which is related to incorporation of more oxygen atoms into the films during deposition. The study of atomic force microscope suggested that the smoother surface morphology was observed in films prepared by using $O_2$ fraction, which causes the higher resistivity in those films, as evidenced by Hall measurements.

Effect of Pulse Frequency on the Properties of ZnO:Al Thin Films Prepared by Pulsed DC Magnetron Sputtering (펄스 DC 마그네트론 스퍼터링법에 의한 ZnO:Al 박막 증착시 펄스 주파수의 영향)

  • 고형덕;이충선;태원필;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.476-480
    • /
    • 2004
  • AZO (Al-doped ZnO) thin films were deposited on glass by pulsed magnetron sputtering method, and their structural, electrical and optical properties were investigated. XRD patterns showed that a highly c-axis preferred AZO film was grown in perpendicular to the substrate when pulse frequency of 30 ㎑ was applied to the target. Microstructure of thin films showed that the fibrous grain of tight dome shape was grown. The deposition rate decreased linearly with increase of pulse frequency, and the lowest resistivity was 8.67${\times}$10$\^$-4/ $\Omega$-cm for the film prepared at pulse frequency of 30 ㎑. The optical transmittance spectra of the films showed a very high transmittance of 85∼90%, within visible wavelength region and exhibited the absorption edge of about 350 nm. The characteristics of the low electrical resistivity and high optical transmittance of AXO films suggested a possibility for the application to transparent conducting oxides.

Properties of ZnO:Al films on polymer substrates by low temperature process

  • Jung, Yu-Sup;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.57-60
    • /
    • 2009
  • Transparent electrode ZnO:Al(AZO)films were deposited on a PES (polyethersulfone) polymer substrate for thin film solar cells applications. A PES substrate with a thickness of 0.2mm and transmittance > 90% in the visible range was used because it is light weight and can deform easily. AZO thin films were prepared at a fixed DC power, $PO_2\;=\;P(O_2)/[P(O_2)\;+\;P(Ar)]$, and various substrate temperatures. The properties of AZO thin films were examined by X-ray diffraction, UV/VIS spectroscopy, four-point probe, Hall measurements, and field emission scanning electron microscopy. The lowest resistivity of all the films was $4.493\;{\times}\;10^{-4}\;[\Omega-cm]$ and the transmittance was > 80% in the visible range.

  • PDF

Transparent Conductive Oxide(TCO) thin film(AZO) prepared for display application (디스플레이용 투명전도막(AZO)의 제작)

  • Kim, H.W.;Keum, M.J.;Son, I.H.;Sin, S.K.;Ka, C.H.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.165-168
    • /
    • 2004
  • In this study, AZO(ZnO:Al) thin film were prepared by FTS(Facing Target Sputtering) system. The electrical, optical and crystallographic properties of AZO thin film with $O_2$ gas flow ratio have been investigated. The thickness, transmittance, crystal structure and resistivity of AZO thin film were measured by a-step, UV-VIS spectrometer, XRD and four-point probe, respectively. As a result AZO thin film deposited with the transmittance over 80% and the resistivity about $10^{-1}\Omega-cm$.

  • PDF