A Study on the Properties of Al doped ZnO (AZO) Thin Films Deposited by RF Magnetron Sputtering

RF 마그네트론 스퍼터링으로 증착된 Al이 도핑 된 ZnO (AZO) 박막의 특성에 대한 연구

  • Yun, Eui-Jung (Department of System Control Engineering, Hoseo University) ;
  • Jung, Myung-Hee (Department of Digital Media, Anyang University) ;
  • Park, Nho-Kyung (Department of Information & Comm. Engineering, Hoseo University)
  • 윤의중 (호서대학교 시스템제어공학과) ;
  • 정명희 (안양대학교 디지털미디어공학과) ;
  • 박노경 (호서대학교 정보통신공학과)
  • Received : 2010.05.25
  • Accepted : 2010.06.15
  • Published : 2010.07.25

Abstract

In this paper, we investigated the effects of $O_2$ fraction on the properties of Al-doped ZnO (AZO) thin films prepared by radio frequency (RF) magnetron sputtering. Hall, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements revealed that the p-type conductivity was exhibited for AZO films with an $O_2$ fraction of 0.9 while the n-type conductivity was observed for films with $O_2$ fractions in range of 0 - 0.6. PL and XPS also showed that the acceptor-like defects, such as zinc vacancies and oxygen interstitials, increased in films prepared by an $O_2$ fraction of 0.9, resulting in the p-type conductivity in the films. Hall results indicated that AZO films prepared by $O_2$ fractions in range of 0 - 0.6 can be used for electrode layers in the applications of transparent thin film transistor. We concluded from the X-ray diffraction analysis that worse crystallinity with a smaller grain size as well as higher tensile stress was observed in the films prepared by a higher $O_2$ fraction, which is related to incorporation of more oxygen atoms into the films during deposition. The study of atomic force microscope suggested that the smoother surface morphology was observed in films prepared by using $O_2$ fraction, which causes the higher resistivity in those films, as evidenced by Hall measurements.

본 연구에서는 산소분압조건이 radio 주파수(RF) 마그네트론 스퍼터링으로 증착된 Al이 도핑된 ZnO (AZO) 박막의 성질에 미치는 영향을 조사하였다. Hall, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) 측정들은 0.9의 산소분압으로 증착된 AZO 박막의 경우 p형 전도도를 나타내었지만 반면에 0 - 0.6 범위의 산소분압으로 증착된 AZO 박막의 경우는 n형 전도도가 관찰 되었다는 것을 보여주고 있다. 또한 PL 및 XPS 결과는 zinc vacancies 와 oxygen interstitials등과 같은 억셉터 같은 결함들이 0.9의 산소분압으로 증착된 AZO 박막 내에서 증가해서 그 결과 p형 전도도의 AZO 박막을 형성하였다는 것을 알려주고 있다. Hall 결과는 0 - 0.6 범위의 산소분압으로 증착된 AZO 박막을 투명 박막 트랜지스터 응용에서 전극층으로 사용할 수 있음을 가리키고 있다. X-ray diffraction 해석으로부터 더 큰 산소분압으로 증착 된 AZO 박막 들이 더 큰 tensile 스트레스 뿐 만 아니라 더 작은 grain 크기를 가지면서 더 악화 된 결정질 특성을 가진다는 사실을 확인 하였는데 이는 증착 도중에 더 많은 산소원자들이 주입되는 것과 관련이 있음을 알 수 있었다. atomic force 마이크로스코프의 연구에서 산소분압을 사용하여 증착된 박막에서 더 완만한 표면 거칠기를 관찰하였는데 산소원자들의 주입이 더 큰 비저항을 초래하였다는 것을 Hall 측정으로도 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 호서대학교

References

  1. D. J. Chadi, Phys. Rev. B. 59, 15181 (1999) https://doi.org/10.1103/PhysRevB.59.15181
  2. T. M. Barnes, K. Olson, and C. A. Wolden, Appl. Phys. Lett. 86, 112112 (2005) https://doi.org/10.1063/1.1884747
  3. S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004) https://doi.org/10.1103/PhysRevLett.92.155504
  4. Y. R. Ryu and T. S. Lee, J. H. Leem, Appl.Phys, Lett. 83, 4032 (2003) https://doi.org/10.1063/1.1625787
  5. G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer and, R. T. Williams, Appl. Phys. Lett. 80, 1195 (2002) https://doi.org/10.1063/1.1449528
  6. T. Ratana, P. Amornpitoksuk, and S. Suwanboon, J. Alloys Compd. 470, 408 (2009). https://doi.org/10.1016/j.jallcom.2008.02.081
  7. Y. Liu, Q. Li, and H. Shao, J. Alloys Compd. 485, 529 (2009). https://doi.org/10.1016/j.jallcom.2009.06.019
  8. J.-H. Lee and J.-T. Song, Thin Solid Films 516,1377 (2008). https://doi.org/10.1016/j.tsf.2007.03.078
  9. K.E. Lee, M. Wang, E.J. Kim, and S.H. Hahn, Curr. Appl. Phys. 9, 683 (2009). https://doi.org/10.1016/j.cap.2008.06.006
  10. C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, and T. Hirao, Thin Solid Films 517, 3265 (2009). https://doi.org/10.1016/j.tsf.2008.11.103
  11. Y.C. Lin, M.Z. Chen, C.C. Kuo, and W.T. Yen, Colloids Surf. A: Physicochem. Eng. Aspects 337, 52 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.049
  12. S. Fernandez, A. Martinez-Steele, J.J. Gandia,and F.B. Naranjo, Thin Solid Films 517, 3152 (2009). https://doi.org/10.1016/j.tsf.2008.11.097
  13. Y.J. Li, Y.W. Kwon, M. Jones, Y.W. Heo, J. Zhou, S.C. Luo, P.H. Holloway, E. Douglas, D.P. Norton, Z. Park, and S. Li, Semicond. Sci.Technol. 20, 720 (2005). https://doi.org/10.1088/0268-1242/20/8/012
  14. D.C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films 516, 5894 (2008). https://doi.org/10.1016/j.tsf.2007.10.081
  15. B. Yao, L.X. Guan, G.Z. Xing, Z.Z. Zhang, B.H. Li, Z.P. Wei, X.H. Wang, C.X. Cong, Y.P. Xie, Y.M. Lu, and D.Z. Shen, J. Lumin. 122-123, 191 (2007). https://doi.org/10.1016/j.jlumin.2006.01.088
  16. H.P. He, F. Zhuge, Z.Z. Ye, L.P. Zhu, F.Z. Wang, B.H. Zhao, and J.Y. Huang, J. Appl.Phys. 99, 023503 (2006). https://doi.org/10.1063/1.2161419
  17. B. D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Massachusetts, 1978), p.102
  18. E.-J. Yun, H.-S. Park, K. H. Lee, and H. G. Nam, "Characterization of Undoped ZnO Films Post-Annealed by Using Helium Gas" J. Korean Phys. Soc. 54, 825 (2009). https://doi.org/10.3938/jkps.54.825
  19. G. Hu, H. Gong, E.F. Chor, and P. Wu, Appl.Phys.Lett. 89, 251102 (2006). https://doi.org/10.1063/1.2408652
  20. E.-J. Yun, H.-S. Park, K.H. Lee, H.G. Nam, and M. Jung, J. Appl. Phys. 103, 073507 (2008). https://doi.org/10.1063/1.2901050
  21. E. Gur, H. Asil, C. Coskun, S. Tuzemen, K. Meral, Y. Onganer, and K. serifoglu, Nucl.Instrum. Methods. Phys. Res., Sect. B 266, 2021 (2008). https://doi.org/10.1016/j.nimb.2008.03.198
  22. X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, and C. Yang, Physica B 388, 145 (2007). https://doi.org/10.1016/j.physb.2006.05.346
  23. E.-J. Yun, J.W. Jung, Y.H. Han, M.-W. Kim, and B.C. Lee, J. Appl. Phys. 105 (2009) 123509. https://doi.org/10.1063/1.3149783
  24. G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, and D.Z. Shen, J. Alloys Compd. 457, 36 (2008). https://doi.org/10.1016/j.jallcom.2007.03.071
  25. D.H. Fan, Z.Y. Ning, and M.F. Jiang, Appl. Surf.Sci. Appl. Surf.Sci, 414 (2005).
  26. H. Priller, M. Decker, R. Hauschild, H. Kalt, and C. Klingshirn, Appl. Phys. Lett. 86, 111909 (2005). https://doi.org/10.1063/1.1882746
  27. S.W. Xue, X.T. Zu, W.G. Zheng, M.Y. Chen, and X. Xiang, S.W. Xue, X.T. Zu, W.G. Zheng, M.Y. Chen, and X. Xiang, Physica B 382, 201 (2006). https://doi.org/10.1016/j.physb.2006.02.032
  28. M.A. Reshchikov, H. Morkoc, B. Nemeth, J. Nause, J. Xie, B. Hertog, and A. Osinsky, Physica B 401-402, 358 (2007). https://doi.org/10.1016/j.physb.2007.08.187
  29. D.H. Kong, W.C. Choi, Y.C. Shin, J.H. Park, and T.G. Kim, J. Korean Phys. Soc. 48, 1214 (2006).
  30. S.-M. Park, T. Ikegami, K. Ebihara, and P.-K. Shin, Appl. Surf. Sci. 253, 1522 (2006). https://doi.org/10.1016/j.apsusc.2006.02.046