• Title/Summary/Keyword: AR (Augmented Reality)

Search Result 710, Processing Time 0.023 seconds

A Study on the Shift Register-Based Multi Channel Ultrasonic Focusing Delay Control Method using a CPLD for Ultrasonic Tactile Implementation (초음파 촉각 구현을 위한 CPLD를 사용한 Shift Register기반 다채널 초음파 집속 지연 제어 방법에 대한 연구)

  • Shin, Duck-Shick;Park, Jun-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2022
  • This paper proposes a shift-register-based multichannel ultrasonic focusing delay control method using a complex programmable logic device (CPLD) for a high resolution of ultrasonic focusing system. The proposed method can achieve the ultrasonic focusing through the delay control of driving signals of each ultrasonic transducer of an ultrasonic array. The delay of the driving signals of all ultrasonic channels can be controlled by setting the shift register in the CPLD. The experiment verified that the frequency of the clock used for the delay control increased, the error of the focusing point decreased, and the diameter of the focusing point decreased as the length of the shift register in the proposed method. The proposed method used only one CPLD for ultrasonic focusing and did not require to use complex hardware circuits. Therefore, the resources required for the design of an ultrasonic focusing system could be reduced. The proposed method can be applied to the fields of human computer interaction (HCI), virtual reality (VR) and augmented reality (AR).

Industry 4.0 & Construction H&S: Comparative Perceptions

  • Beale, James;Smallwood, John
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.249-256
    • /
    • 2020
  • Historical construction health and safety (H&S) challenges, in terms of a range of resources and issues, continue to be experienced, namely design process-related hazards are encountered on site, workers are unaware of the hazards and risks related to the construction process and its activities, activities are commenced on site without adequate hazard identification and risk assessments (HIRAs), difficulty is experienced in terms of real time monitoring of construction-related activities, workers handle heavy materials, plant, and equipment, and ultimately the experience of injuries. Given the abovementioned, and the advent of Industry 4.0, a quantitative study, which entailed the completion of a self-administered questionnaire online, was conducted among registered professional (Pr) and candidate Construction H&S Agents, to determine the potential of Industry 4.0 to contribute to resolving the challenges cited. The findings indicate that Industry 4.0 technologies such as augmented reality (AR), drone technology, virtual reality (VR), VR based H&S training, and wearable technology /sensors have the potential to resolve the cited H&S challenges as experienced in construction. Conclusions include that Industry 4.0 technologies can finally address the persistent H&S challenges experienced in construction. Recommendations include: employer associations, professional associations, and statutory councils should raise the level of awareness relative to the potential implementation of Industry 4.0 relative to H&S in construction; case studies should be documented and shared; tertiary construction management education programmes should integrate Industry 4.0 into all possible modules, especially H&S-related modules, and continuing professional development (CPD) H&S should address Industry 4.0.

  • PDF

Analysis of Research Trends in Monitoring Mental and Physical Health of Workers in the Industry 4.0 Environment (Industry 4.0 환경에서의 작업자 정신 및 신체 건강 상태 모니터링 연구 동향 분석)

  • Jungchul Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.701-707
    • /
    • 2024
  • Industry 4.0 has brought about significant changes in the roles of workers through the introduction of innovative technologies. In smart factory environments, workers are required to interact seamlessly with robots and automated systems, often utilizing equipment enhanced by Virtual Reality (VR) and Augmented Reality (AR) technologies. This study aims to systematically analyze recent research literature on monitoring the physical and mental states of workers in Industry 4.0 environments. Relevant literature was collected using the Web of Science database, employing a comprehensive keyword search strategy involving terms related to Industry 4.0 and health monitoring. The initial search yielded 1,708 documents, which were refined to 923 journal articles. The analysis was conducted using VOSviewer, a tool for visualizing bibliometric data. The study identified general trends in the publication years, countries of authors, and research fields. Keywords were clustered into four main areas: 'Industry 4.0', 'Internet of Things', 'Machine Learning', and 'Monitoring'. The findings highlight that research on health monitoring of workers in Industry 4.0 is still emerging, with most studies focusing on using wearable devices to monitor mental and physical stress and risks. This study provides a foundational overview of the current state of research on health monitoring in Industry 4.0, emphasizing the need for continued exploration in this critical area to enhance worker well-being and productivity.

An Efficient Location Based Service based on Mobile Augmented Reality applying Street Data extracted from Digital Map (도로 데이터를 활용한 모바일 증강현실 기반의 효율적인 위치기반 서비스)

  • Lee, Jeong Hwan;Jang, Yong Hee;Kwon, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.63-70
    • /
    • 2013
  • With the increasing use of high-performance mobile devices such as smartphones, users have been able to connect to the Internet anywhere, anytime, so that Location Based Services(LBSes) have been popular among the users in order to obtain personalized information associated with their locations. The services have advanced to provide the information realistically and intuitively by adopting Augmented Reality(AR) technology, where the technology utilizes various sensors embedded in the mobile devices. However, the services have inherent problems due to the small screen size of the mobile devices and the complexity of the real world environment. Overlapping contents on a small screen and user's possible movement should be taken into consideration in displaying the icons on objects that block user's environment such as trees and buildings. The problems mainly happen when the services use only user's location and sensor data to calculate the position of the displayed information. In order to solve the problems, this paper proposes a method that applies street data extracted from a digital map. The method uses the street data as well as the location and direction data to determine contents that are placed on both sides of a virtual street which augments the real street. With scrolling the virtual street, which means a virtual movement, some information far away from the location of the user can be identified without user's actual movement. Also the proposed method is implemented for region "Aenigol", and the efficiency and usefulness of the method is verified.

Mobile Augmented Reality based CFD Simuation Post-Processor (모바일 증강현실 기술을 활용한 유체시뮬레이션 후처리기 연구)

  • Park, Sang-Jin;Kim, Myungil;Kim, Ho-yoon;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.523-533
    • /
    • 2019
  • The convergence of engineering and IT technology has brought many changes to the industry as well as academic research. In particular, computer simulation technology has evolved to a level that can accurately simulate actual physical phenomena and analyze them in real time. In this paper, we describe the CFD technology, which is mainly used in industry, and the post processor that uses the augmented reality which is emerging as the post-processing. Research on the visualization of fluid simulation results using AR technology is actively being carried out. However, due to the large size of the result data, it is limited to researches that are published in a desktop environment. Therefore, it is limitation that needs to be reviewed in actual space. In this paper, we discuss how to solve these problems. We analyze the fluid analysis results in the post-processing, and then perform optimizing data (more than 70%)to support operation in the mobile environment. In the visualization, lightweight data is used to perform real-time tracking using cloud computing, The analysis result is matched to the screen and visualized. This allows the user to review and analyze the fluid analysis results in an efficient and immersive manner in the various spaces where the simulation is performed.

Case Study of Short Animation with Facial Capture Technology Using Mobile

  • Jie, Gu;Hwang, Juwon;Choi, Chulyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.56-63
    • /
    • 2020
  • The Avengers film produced by Marvel Comics shows visual effects that were impossible to produce in the past. Companies that produce film special effects were initially equipped with large personnel and equipment, but technology is gradually evolving to be feasible for smaller companies that do not have high-priced equipment and a large workforce. The development of hardware and software is becoming increasingly available to the general public as well as to experts. Equipment and software which were difficult for individuals to purchase before quickly popularized high-performance computers as the game industry developed. The development of the cloud has been the driving force behind software costs. As augmented reality (AR) performance of mobile devices improves, advanced technologies such as motion tracking and face recognition technology are no longer implemented by expensive equipment. Under these circumstances, after implementing mobile-based facial capture technology in animation projects, we have identified the pros and the cons and suggest better solutions to improve the problem.

Interactive Digital Storytelling Based on Interests (흥미도를 반영한 인터렉티브 디지털 스토리텔링)

  • Kim, Yang-Wook;Kim, Jong-Hun;Park, Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.508-511
    • /
    • 2009
  • In Interactive Storytelling, storyline is developed according to the user's interaction. Diffrerent from linear, fixed storytelling, users may select an event or make decisions which affect on the story plotting. Therefore user's feeling of immersion and interest may be greatly enhanced. In this paper, we used markers and multi-touch pad for user's interaction for interactive storytelling. Users could present his/her level of interest and provide feedback through markers and multi-touch pad, through which storyline was differently developed.

  • PDF

Offline Camera Movement Tracking from Video Sequences

  • Dewi, Primastuti;Choi, Yeon-Seok;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.69-72
    • /
    • 2011
  • In this paper, we propose a method to track the movement of camera from the video sequences. This method is useful for video analysis and can be applied as pre-processing step in some application such as video stabilizer and marker-less augmented reality. First, we extract the features in each frame using corner point detection. The features in current frame are then compared with the features in the adjacent frames to calculate the optical flow which represents the relative movement of the camera. The optical flow is then analyzed to obtain camera movement parameter. The final step is camera movement estimation and correction to increase the accuracy. The method performance is verified by generating a 3D map of camera movement and embedding 3D object to the video. The demonstrated examples in this paper show that this method has a high accuracy and rarely produce any jitter.

  • PDF

Augmented Reality Based Tangible Interface For Digital Lighting of CAID System (CAID 시스템의 디지털 라이팅을 위한 증강 현실 기반의 실체적 인터페이스에 관한 연구)

  • Hwang, Jung-Ah;Nam, Tek-Jin
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.233-240
    • /
    • 2007
  • 컴퓨터의 발전으로 이를 이용해 제품을 디자인하는 CAI가 발전하게 되었다. 산업 디자이너들은 CAID 도구를 사용하여 3차원 장면을 시각화하기 위하여 이를 2차원 이미지로 만드는 렌더링 기능을 수행한다. 렌더링 기능은 디자이너들이 자신이 디자인 제품의 재질, 조명, 카메라 등을 시뮬레이션 해 볼 수 있게 하여 중요한 기능으로 활용되고 있다. 하지만 현재의 컴퓨터 입출력 시스템을 활용하여 CAID 도구의 광원과 카메라 등의 3차원 위치와 속성을 조작하는 데에 인터페이스 상의 문제가 발생한다. 본 논문에서는 증강현실과 실체적 인터페이스를 활용한 가상의 라이트 조작 공간인 TLS(Tangible Lighting Studio)를 제안한다. 이는 광원과 카메라의 위치, 효과를 물리적으로 조작할 수 있는 유닛들로 구성되어있다. 그리고 가상의 모델을 실제와 같이 보이게 하기 위한 입체 디스플레이 방식을 제안한다. 새로운 실체적 인터페이스를 제안함으로써 산업디자인 분야뿐 아니라 건축, 원화, 사진 촬영 등의 분야에서 시뮬레이션 도구로 적용할 수 있으리라 기대된다.

  • PDF

The Mountain Climbing Information Public Service model based on broadcasting and telecommunication convergence service (방송통신 융합기반의 등산정보 공공서비스 모델)

  • Byeon, Sang-Woo;Hwang, Soon-Ki
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.189-190
    • /
    • 2011
  • Recently people have increased to climb mountain. Owing to developing IT technology, the number of people using smart phone have increased remarkably as well. In this context, the Korea Forest Service has implemented the project of Mountain Climbing Information Public Service(MCIPS). The purpose of the MCIPS is to support climbing safely based on a trail map of spatial data of GIS(geographic information system). The customer will be able to access the MCIPS through n-screen(IP-TV, Web Site, Smart phone, Galaxy tab) provided a broadcasting and telecommunication convergence service. In addition, the MCIPS would support two-way communication through connecting to Twitter and Youtube. The MCIPS will make the customer fun using Augmented Reality(AR) of Smart phone(Android) and contribute to protecting people from mountain accidents.

  • PDF