DOI QR코드

DOI QR Code

A Study on the Shift Register-Based Multi Channel Ultrasonic Focusing Delay Control Method using a CPLD for Ultrasonic Tactile Implementation

초음파 촉각 구현을 위한 CPLD를 사용한 Shift Register기반 다채널 초음파 집속 지연 제어 방법에 대한 연구

  • Shin, Duck-Shick (Smart Electrics Research Center, Korea Electronics Technology Institute) ;
  • Park, Jun-Heon (Smart Electrics Research Center, Korea Electronics Technology Institute) ;
  • Lim, Young-Cheol (Department of Electrical Engineering, Chonnam National University) ;
  • Choi, Joon-Ho (Department of Electrical Engineering, Chonnam National University)
  • 신덕식 (한국전자기술연구원 스마트전장연구센터) ;
  • 박준헌 (한국전자기술연구원 스마트전장연구센터) ;
  • 임영철 (전남대학교 전기공학과) ;
  • 최준호 (전남대학교 전기공학과)
  • Received : 2022.08.22
  • Accepted : 2022.09.07
  • Published : 2022.09.30

Abstract

This paper proposes a shift-register-based multichannel ultrasonic focusing delay control method using a complex programmable logic device (CPLD) for a high resolution of ultrasonic focusing system. The proposed method can achieve the ultrasonic focusing through the delay control of driving signals of each ultrasonic transducer of an ultrasonic array. The delay of the driving signals of all ultrasonic channels can be controlled by setting the shift register in the CPLD. The experiment verified that the frequency of the clock used for the delay control increased, the error of the focusing point decreased, and the diameter of the focusing point decreased as the length of the shift register in the proposed method. The proposed method used only one CPLD for ultrasonic focusing and did not require to use complex hardware circuits. Therefore, the resources required for the design of an ultrasonic focusing system could be reduced. The proposed method can be applied to the fields of human computer interaction (HCI), virtual reality (VR) and augmented reality (AR).

Keywords

Acknowledgement

이 논문은 2022년 산업통상자원부의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P189800002).

References

  1. K. Minamizawa, S. Kamuro, S. Fukamachi, N. Kawakami, and S. Tachi, "GhostGlove: Haptic existence of the virtual world", In ACM SIGGRAPH 2008 New Tech Demos, pp. 1-1, 2008.
  2. S. C. Kim, C. H. Kim, T. H. Yang, G. H. Yang, S. C. Kang, and D. S. Kwon, "SaLT: Small and lightweight tactile display using ultrasonic actuators", In RO-MAN 2008-The 17th IEEE Int. Symp. ROMAN, pp. 430-435, 2008.
  3. R. Sodhi, I. Poupyrev, M. Glisson, and A. Israr, "AIREAL: interactive tactile experiences in free air", ACM Trans. Graph. (TOG), Vol. 32, No. 4, pp. 1-10, 2013.
  4. M. Y. Tsalamlal, P. Issartel, N. Ouarti, and M. Ammi, "HAIR: HAptic feedback with a mobile AIR jet", 2014 IEEE Int. Conf. on Robot. Autom. (ICRA), pp. 2699-2706, 2014.
  5. Y. Ochiai, K. Kumagai, T. Hoshi, S. Hasegawa, and Y. Hayasaki, "Cross-field aerial haptics: Rendering haptic feedback in air with light and acoustic fields", Proc. of the 2016 CHI Conf. on Hum. Factor. Comput. Syst., pp. 3238-3247, 2016.
  6. J. H. Jun, J. R. Park, Y. M. Bae, J.-Y. Park, H.-S. Kim, S. Choi, S. J. Jung, S. H. Park, D.-I. Yeom, G.-I. Jung, J.-S. Kim, S.-C. Chung, and S. P. Kim, "Laser-induced thermoelastic effects can evoke tactile sensations", Sci. Rep., Vol. 5, No. 1, pp. 1-16, 2015.
  7. H. Lee, J.-S. Kim, J.-Y. Kim, S. Choi, J.-H. Jun, J.-R. Park, A.-H. Kim, H.-B. Oh, J.-H. Baek, S.-J. Yang, H.-S. Kim, and S.-C. Chung, "Mid-air tactile stimulation using indirect laser radiation", IEEE Trans. Haptics, Vol. 9, No. 4, pp. 574-585, 2016. https://doi.org/10.1109/TOH.2016.2569081
  8. T. Hoshi, M. Takahashi, T. Iwamoto, and H. Shinoda, "Noncontact tactile display based on radiation pressure of airborne ultrasound", IEEE Trans. Haptics, Vol. 3, No. 3, pp 155-165, 2010. https://doi.org/10.1109/TOH.2010.4
  9. M. Ito, D. Wakuda, S. Inoue, Y. Makino, and H. Shinoda, "High spatial resolution midair tactile display using 70 kHz ultrasound", Int. Conf. on Hum. Haptic Sens. Touch Enabled Comp. Appl., pp. 57-67, 2016.
  10. S. Suzuki, R. Takahashi, M. Nakajima, K. Hasegawa, Y. Makino, and H. Shinoda, "Midair haptic display to human upper body", 2018 57th Annual Conf. Soc. Instrum. Control Eng. Japan (SICE), pp. 848-853, 2018.
  11. T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramanian, "Ultra Haptics: multi-point mid-air haptic feedback for touch surfaces", Proc. the 26th Annual ACM Symp. on User Interface Softw. Technol., pp. 505-514, 2013.
  12. A. Price and B. Long, "Fibonacci spiral arranged ultrasound phased array for mid-air haptics", 2018 IEEE Int. Ultrason. Symp. (IUS), pp. 1-4, 2018.
  13. A. Marzo, T. Corkett, and B. W. Drinkwater, "Ultraino: An open phased-array system for narrowband airborne ultrasound transmission", IEEE Trans. Ultrason. Ferroelectr. Freq Control, Vol. 65, No. 1, pp. 102-111, 2017.
  14. A. Marzo Perez and B. W. Drinkwater, "Holographic acoustic tweezers", Proc. Natl Acad. Sci., Vol. 116, No. 1, pp. 84-89, 2019. https://doi.org/10.1073/pnas.1813047115
  15. K. Hasegawa and H. Shinoda, "Aerial vibrotactile display based on multiunit ultrasound phased array", IEEE Trans. Haptics, Vol. 11, No. 3, pp. 367-377, 2018. https://doi.org/10.1109/TOH.2018.2799220
  16. J. Buckwalter and A. Hajimiri, "An active analog delay and the delay reference loop", 2004 IEE Radio Freq. Integr. Circuits (RFIC) Syst., pp. 17-20, 2004.
  17. C. Y. Kim, J. Yang, D. W. Kim, and S. Hong, "A K-band CMOS voltage controlled delay line based on an artificial left-handed transmission line", IEEE Mmicro. Wirel. Compon. Lett., Vol. 18, No. 11, pp. 731-733, 2008. https://doi.org/10.1109/LMWC.2008.2005224
  18. Y. Liu, H. Li, Y. Wang, T. Xing, H. Baghaei, J. Uribe, and W. H. Wong, "A programmable high-resolution ultra-fast delay generator", IEEE Trans. Nucl. Sci., Vol. 50, No. 5, pp. 1487-1490, 2003. https://doi.org/10.1109/TNS.2003.817412
  19. H. Zhang, H. G. Yang, J. Zhang, and F. Liu, "High-speed programmable counter design for PLL based on a delay partition technique", 2009 IEEE Int. Symp. on Radio-Freq. Integr. Technol. (RFIT), pp. 100-103, 2009.
  20. M. A. Do, X. P. Yu, J. G. Ma, K. S. Yeo, R. Wu, and Q. X. Zhang, "A 2GHz programmable counter with new re-loadable D flip-flop", 2003 IEEE Conf. on Electron Devices Solid-State Circuits (IEEE Cat. No. 03TH8668), pp. 269-272, 2003.
  21. T. Hasegawa, T. Kido, T. Iizuka, and C. Matsuoka, "A general theory of Rayleigh and Langevin radiation pressures", Acous. Sci. Technol., Vol. 21, No. 3, pp. 145-152, 2000.
  22. J. Awatani, "Studies on acoustic radiation pressure. I.(General considerations)", J. Acous. Soc. Am., Vol. 27, No. 2, pp. 278-281, 1955. https://doi.org/10.1121/1.1907514
  23. T. Hoshi, "Development of aerial-input and aerial-tactile-feedback system", 2011 IEEE World Haptics Conf., pp. 569-573, 2011.
  24. T. Hoshi, T. Iwamoto, and H. Shinoda, "Non-contact tactile sensation synthesized by ultrasound transducers", World Haptics 2009-Third Joint Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoper. Syst., pp. 256-260, 2009.
  25. B. Long, S. A. Seah, S. Subramanian, and T. Carter, "Rendering volumetric haptic shapes in mid-air using ultrasound", ACM Trans. Graph., Vol. 33, No. 6, p. 181, 2014.
  26. J. Chen, F. Yu, Z. Wang, and L. Lin, "Multichannel ultrasound focusing delay control method based on variablelength shift register for airborne ultrasound tactile feedback", IEEE Access, Vol. 8, pp. 24904-24913, 2020. https://doi.org/10.1109/ACCESS.2020.2970451
  27. https://www.ultraleap.com/product/stratos-explore/ (retrieved on Sep. 1, 2022).