• Title/Summary/Keyword: AL Liner

Search Result 42, Processing Time 0.023 seconds

Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings (저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가)

  • Byun, GyeongJun;Kim, JaeIck;Lee, Changhee;Kim, SeeJo;Lee, Seong
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

Effect of surface treatments on the shear bond strength of full-contour zirconia layered with porcelain (단일구조 지르코니아(zirconia) 전부도재관의 표면처리에 따른 전장도재와의 전단결합강도)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.121-126
    • /
    • 2013
  • Purpose: The aim of this research was to investigate difference in shear bond strengths of full-contour zirconia layered with porcelain. Methods: Disk-shaped (diameter: 12.0 mm; height: 3.0 mm) zirconia were randomly divided into six groups according to the surface conditioning method to be applied (N=90, n=15 per group): group 1-contol group(ZC); group 2-airborne particle abrasion with $50-{\mu}m\;Al_2O_3(5A)$; group $3-50-{\mu}m\;Al_2O_3$ + liner(5AL), group $4-110-{\mu}m\;Al_2O_3(1A)$; group $5-110-{\mu}m\;Al_2O_3$ + liner(1AL); group 6-liner(LC). On each block, zirconia porcelain was build up according to manufacturer's instructions. All samples were fixed with measuring jigs and shear bond strength were measured with Universal testing machine. Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: LC showed the highest value($29.92{\pm}2.55$ MPa) and ZC showed the lowest value($13.22{\pm}1.37$ MPa). Zirconia liner and Alumina oxide groups was significantly higher shear bond strength than control(p<0.05). 5A (without liner $22.18{\pm}2.37$, with liner $22.84{\pm}1.74$ MPa) was higher shear bond strength than $110{\mu}m$ (without liner $20.18{\pm}2.38$, with $20.71{\pm}2.67$). Conclusion: Surface treatments may have advantage in bond strength improvement for full-contour zirconia layered with porcelain.

Effect of sandblasting and liner on shear bond strength of veneering ceramic to zirconia (샌드블라스팅 처리와 라이너가 지르코니아와 전장도재의 전단결합 강도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.6-12
    • /
    • 2021
  • Purpose: This study aimed to compare the shear bond strength between zirconia cores and veneer ceramics as per the sand blasting and liner treatments. Methods: The following 4 groups of zirconia-veneering ceramic specimens were prepared: (1) Group I, untreated; (2) Group II, with 110 ㎛ aluminium oxide (Al2O3) sandblasting; (3) Group III, with liner (IPS e.max ZirLiner; Ivoclar Vivadent); and (4) Group IV, with 110 ㎛ Al2O3 sand blasting and liner. Surface roughness was measured for all the prepared specimens, and the surface morphology was observed using a scanning electron microscope. All the samples (n=40) were fixed with measuring jigs, and shear bond strengths were obtained using a universal testing machine with a crosshead speed of 0.5 mm/min. The shear bond strength data were analyzed using one-way analysis of variance and t-test. The post hoc comparison was performed using the Tukey's test (α=0.05). Results: A significant difference in the surface roughness was observed between the specimens of groups I and II (p<0.05). Surface treatment with liner and sandblasting showed higher shear bond strength between zirconia core and veneering ceramic (p<0.05). Conclusion: The sand blasting and liner treatment increased the shear bond strength between zirconia core and veneering ceramic.

Application of non-reacting and reacting flow simulation for combustor development (연소기 개발에서 시뮬레이션 기술의 활용)

  • Jung, Seungchai;Yang, Siwon;Kim, Shaun;Park, Heeho;Ahn, Chulju;Yoon, Samson
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.123-126
    • /
    • 2013
  • Combustor development requires high fidelity simulation capable of predicting recirculation zone (RZ), temperature field, and pollutant emission. Swirling flow is widely used in combustor for its benefits in efficient mixing and flame stabilization by RZ. Large eddy simulation (LES) is used to calculate swirling flow in an expanding pipe [1], and shows higher accuracy than RANS. Reactive flow modeling using LES and flamelet model is validated with experiments by Barlow et al. [4] and Masri et al. [3]. Finally, heat transfer simulation of Samsung Techwin's combustor liner is presented.

  • PDF

Effects of Aluminum Oxide Particles on the Erosion of Nozzle Liner for Solid Rocket Motors (고체 추진기관에서 산화알루미늄 입자가 노즐 내열재의 삭마에 미치는 영향)

  • 황기영;임유진;함희철
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.95-103
    • /
    • 2006
  • The compositions, the gas properties in motor chamber and the aluminum oxide (Al2O3) particle size for two kinds of solid propellants with approximately 20% aluminum powder have been investigated. The SEM photographs of $Al_2O_3$ taken from nozzle entrance liner show that the aluminized PCP propellant with 47% volumetric fraction AP/HNIW and bimodal oxidizer 200-5 ${\mu}m$ can offer greater possibility for increasing aluminum agglomeration than the aluminized HTPB propellant with 64% volumetric fraction AP and trimodal oxidizer 400-200-6 ${\mu}m$. The nozzle entrance liner of solid rocket motor with the PCP propellant shows greater erosion at 4 circumferential sections in line with grain slots due to the impingement of large particles, but that with the HTPB propellant shows uniform erosion with circumferential angle.

Boots Gap Liner Casting Process Development of Solid Rocket Motor (고체 추진기관 적용 부츠갭 라이너 충진 공정 개발)

  • Kim, Yong-Woon;Kim, Jin-Yong;Lee, Won-Bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.211-214
    • /
    • 2007
  • Solid rocket motor that includes AL powder in propellant gets slag during static firing test. Slag is piled up to weak area in motor case and causes dangerous phenomena like explosion of motor. In this paper, It is shown that boots gap liner casting process was developed and static firing test was performed with better results.

  • PDF

Effect of Centrifugal Casting Parameters on The Distribution of Primary Si Particles of B390 Aluminum Alloy (B390 알루미늄 합금의 초정Si 입자분포에 미치는 원심주조 공정인자의 영향)

  • Park, Jeong-Wook;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • To develop a functionally graded microstructure of cylindrical liner, effect of centrifugal casting parameters such as pouring temperature of hyper-eutectic Al-Si alloy melt, mold pre-heating temperature, and rotational frequency of mold on distribution of primary Si particles across wall thickness were investigated. Segregation tendency of Si particles toward inner side of cylindrical liner increased as the increase of rotational frequency of mold, pouring temperature of melt and mold pre-heating temperature. Especially, distribution density of primary Si particles within 1.5 mm from inner surface of cylindrical liner was above 35% under the centrifugal casting condition of $750^{\circ}C$ melt pouring temperature, $300^{\circ}C$ mold pre-heating temperature, and 2500 rpm mold rotational frequency.

Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering

  • Saka, Muhammet;Yuzugullu, Bulem
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.485-493
    • /
    • 2013
  • PURPOSE. To evaluate the effects of surface treatments on shear bond strength (SBS) between microwave and conventionally sintered zirconia core/veneers. MATERIALS AND METHODS. 96 disc shaped Noritake Alliance zirconia specimens were fabricated using YenaDent CAM unit and were divided in 2 groups with respect to microwave or conventional methods (n=48/group). Surface roughness (Ra) evaluation was made with a profilometer on randomly selected microwave (n=10) and conventionally sintered (n=10) cores. Specimens were then assessed into 4 subgroups according to surface treatments applied (n=12/group). Groups for microwave (M) and conventionally (C) sintered core specimens were as follows; $M_C$,$C_C$: untreated (control group), $M_1,C_1:Al_2O_3$ sandblasting, $M_2,C_2$:liner, $M_3,C_3:Al_2O_3$ sandblasting followed by liner. Veneer ceramic was fired on zirconia cores and specimens were thermocycled (6000 cycles between $5^{\circ}-55^{\circ}C$). All specimens were subjected to SBS test using a universal testing machine at 0.5 mm/min, failure were evaluated under an optical microscope. Data were statistically analyzed using Shapiro Wilk, Levene, Post-hoc Tukey HSD and Student's t tests, Two-Way-Variance- Analysis and One-Way-Variance-Analysis (${\alpha}$=.05). RESULTS. Conventionally sintered specimens ($1.06{\pm}0.32{\mu}m$) showed rougher surfaces compared to microwave sintered ones ($0.76{\pm}0.32{\mu}m$)(P=.046), however, no correlation was found between SBS and surface roughness (r=-0.109, P=.658). The statistical comparison of the shear bond strengths of $C_3$ and $C_1$ group (P=.015); $C_C$ and $M_C$ group (P=.004) and $C_3$ and $M_3$ group presented statistically higher (P=.005) values. While adhesive failure was not seen in any of the groups, cohesive and combined patterns were seen in all groups. CONCLUSION. Based on the results of this in-vitro study, $Al_2O_{3-}$ sandblasting followed by liner application on conventionally sintered zirconia cores may be preferred to enhance bond strength.

A Feasibility Study on the Development of Admixed Liner Using Gibbsite and Clay (Gibbsite 를 이용한 대체 차수재 개발 타당성 연구 - Batch Test를 통한 흡착실험을 중심으로 -)

  • 현재혁;이상현;이지훈
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.75-93
    • /
    • 1995
  • This study investigates the adsorption capacity of the gibbsite and the clay on the development of admixed liner. The gibbsite is produced as a by-product in the pretreatment process for cleaning and coloring of Alurninurn sash. From the study, following conclusions were obtained: 1) The adsorption of metals such as Cu(II), Cd(II), and Ni(II) and phenol on gibbsite and l:entonite was equilibrated rather quickly(12 ~48 hrs ). 2) The rate and extent of adsorption is a function of surface area the adsorbent having. 3) The Larigmuir isotherm is found to be more suitable than Freundlich isotherm for the adsorption analysis of heavy metals on gibbsite and bentonite. 4) In case of phenol, Freundlich isotherm, whose N value is close to 1, i.e., close to linear isotherm, is more fit to describe the adsorption on gibbsite and bentonite. 5) The amount of metals and phenol adsorbed is found to be in the following order : Adsorbent : $2{\mu}m-Al(OH)_3$ > Mixed Solid > $12{\mu}m-Al(OH)_3$ > Na-Bentonite > $30{\mu}m-Al(OH)_3$

  • PDF

Effect of modeling liquid on the shear-bond strength of zirconia core - porcelain veneer (도재 전용액이 지르코니아 코어-도재 비니어의 전단결합강도에 미치는 영향)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: This study is to evaluate the effect of modeling liquid on the shear-bond strength between zirconia core and veneering ceramic. Methods: Disk-shaped (diameter: 12.0mm; height: 3.0mm) zirconia were randomly divided into six groups according to the surface conditioning method and whether modeling liquid is used or not to be applied (N=60, n=10 per group): group 1-control group with distilled water(ZD); group 2-control group with modeling liquid(ZM); group 3-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$(AD) with distilled water; group 4-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$ with modeling liquid(AM); group 5-liner with distilled water(LD); group $6{\pounds}{\neq}liner$ with modeling liquid(LM). Contact angles were determined by the sessile drop method at room temperature using a contact angle measurement apparatus. The specimens were prepared using dentin veneering ceramics, veneered, 3mm high and 2.8mm in diameter, over the cores. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50mm/min until failure. The fractured zirconia surfaces were evaluated by using stereomicroscope (${\times}30$). Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: ZD showed the highest contact angle($50.6{\pm}5.4^{\circ}$) and LD showed the lowest value($6.7{\pm}1.3^{\circ}$). Control groups and zirconia liner groups were significantly higher contact angle than liner groups(p<0.05). LD was the highest shear bond strength($43.9{\pm}3.8MPa$) and ZD was the lowest shear bond strength($24.8{\pm}4.9MPa$). Shear bond strengths of control groups and contact angle of liner groups were not significantly different((p>0.05). Liner groups presented adhesive failures. The others groups showed cohesive and adhesive failures. Conclusion: Modeling liquid groups showed lower contact angles and lower shear bond strength compared to those of distilled water groups.