DOI QR코드

DOI QR Code

Effects of Aluminum Oxide Particles on the Erosion of Nozzle Liner for Solid Rocket Motors

고체 추진기관에서 산화알루미늄 입자가 노즐 내열재의 삭마에 미치는 영향

  • Published : 2006.08.31

Abstract

The compositions, the gas properties in motor chamber and the aluminum oxide (Al2O3) particle size for two kinds of solid propellants with approximately 20% aluminum powder have been investigated. The SEM photographs of $Al_2O_3$ taken from nozzle entrance liner show that the aluminized PCP propellant with 47% volumetric fraction AP/HNIW and bimodal oxidizer 200-5 ${\mu}m$ can offer greater possibility for increasing aluminum agglomeration than the aluminized HTPB propellant with 64% volumetric fraction AP and trimodal oxidizer 400-200-6 ${\mu}m$. The nozzle entrance liner of solid rocket motor with the PCP propellant shows greater erosion at 4 circumferential sections in line with grain slots due to the impingement of large particles, but that with the HTPB propellant shows uniform erosion with circumferential angle.

알루미늄 분말이 약 20% 포함된 2종류의 고체 추진제에 대해 원료성분, 연소실에서의 연소가스 물성치 및 산화알루미늄의 입자 크기를 비교 분석하였다. 산화제(AP/HNIW) 분말이 200과 5 ${\mu}m$로 이분양상이고 47% 부피분율을 지닌 알루미늄을 함유한 PCP계 추진제는 산화제(AP) 분말이 400, 200 및 6 ${\mu}m$로 삼분양상이고 64% 부피분율을 지닌 알루미늄을 함유한 HTPB계 추진제 보다 알루미늄들이 응집될 가능성이 크다는 것을 축소부 내열재에서 채취한 산화알루미늄 입자의 SEM 사진을 통해 확인할 수 있었다. PCP계 추진제를 적용한 고체 추진기관의 노즐 축소부 내열재에서는 큰 산화알루미늄 입자의 충돌로 인해 그레인 슬랏과 일치하는 4개 원주방향 부위에서 삭마가 크게 되었지만 HTPB계 추진제를 적용한 경우에는 원주방향으로 균일하게 삭마되었다.

Keywords

References

  1. Douglass, H. W., Collins Jr., J. H., Ellis, R. A. and Keller Jr, R. B., 'Solid Rocket Motor Nozzles, Space Vehicle Design Criteria (Chemical Propulsion)', NASA SP-8115, 1975
  2. 황기영, 강윤구, '삭마 및 내부 열분해를 고려한 로켓노즐 탄소계 내열재의 2차원 열해석', 한국추진공학회지, 제 3권, 제 2호, 1999, pp. 37 -47
  3. Devenas, A, 'Development of Modern Solid Propellants', Journal of Propulsion and Power, Vol. 19, No.6, 2003, pp. 1108-1128 https://doi.org/10.2514/2.6947
  4. Sutton, G. P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons, Inc., 1992, pp. 416-455
  5. Ketner, D. M. and Hess, K. S., 'Particle Impingement Erosion', AIAA Paper 79-1250, June 1979
  6. Sabnis, J. S. and Madabhushi, R. K., 'Simulation of Flow and Particle Impingement Patterns in Titan IV SRM Aft Closure', AIAA Paper 95-2879, July 1995
  7. Salita, M., 'Deficiencies and Requirements in Modeling of Slag Generation in Solid Rocket Motors', Journal of Propulsion and Power, Vol. 11, No.1, 1995, pp. 10-23 https://doi.org/10.2514/3.23835
  8. 임유진, 황갑성, '고체 추진제의 종류와 선택', 한국항공우주학회지, 제 9권, 제 4호, 2005, pp. 112-120
  9. 임유진, 황갑성, '고체 추진제의 종류와 선택', 한국항공우주학회지, 제 22권, 제 6호, 1994, pp. 147-154
  10. Sambamurthi, J. K., Price, E. W. and Sigman, R. K., 'Aluminum Agglomeration in Solid-Propellant Combustion', AIAA Journal, Vol. 22, No.8, 1984, pp. 1132-1138 https://doi.org/10.2514/3.48552
  11. Cohen, N. S., 'A Pocket Model for Aluminum Agglomeration in Composite Propellants', AIAA Journal, Vol. 21, No.5, 1983, pp. 720-725 https://doi.org/10.2514/3.8139
  12. McBride, B. J. and Gordon, S., 'Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II. Users Manual and Program Description', NASA RP-1311, 1996
  13. Keswani, S. T., Andiroglu, E., Campbell, J. D., and Kuo, K. K., 'Recession Behavior of Graphitic Nozzles in Simulated Rocket Motors', Journal of Spacecraft, Vol. 22, No.4, 1985, pp. 396-397 https://doi.org/10.2514/3.25763
  14. Boyarintsev, V. I. and Zvyagin, Yu. V., 'Turbulent Boundary Layer on Reacting Graphite Surface', 5th Int. Heat Transfer Conference, Tokyo, Sep. 1974, pp. 264-268
  15. 윤명원, 배주찬, 김윤곤, '고체 로켓 모터의 연소가스내 알루미늄 입자의 포집/분석 및 그 응용', 한국항공우주학회지, 제 26권, 제 5호, 1998, pp. 170 -176
  16. Hermsen, R. W., 'Aluminum Oxide Particle Size for Solid Rocket Motor Performance Prediction', Journal of Spacecraft, Vol. 18, No.6, 1981, pp. 483-490 https://doi.org/10.2514/3.57845
  17. Crowe, C. T. and Willoughby, P. G., 'A Study of Particle Growth in a Rocket Nozzle', AIAA Journal, Vol. 5, No.7, 1967, pp. 1300-1304 https://doi.org/10.2514/3.4187
  18. Caveny, L. H. and Cany, A, 'Breakup of Al1/$Al_{2}O{3}$ Agglomerates in Accelerating Flowfields', AIAA Journal, Vol. 17, No. 12, 1979, pp. 1368-1371 https://doi.org/10.2514/3.7633
  19. Johnston, W. A, Murdock, J. W., Koshigoe, S. and Than, P. T., 'Slag Accumulation in the Titan Solid Rocket Motor Upgrade', Journal of Propulsion and Power, Vol. 11, No.5, 1995, pp. 1012-1020 https://doi.org/10.2514/3.23931
  20. Traineau, J. C. Kuentzmann, P., Prevost, M. Tarrin, P. and Delfour, A., 'Particle Size Distribution Measurements in a Subscale Motor for the Ariane 5 Solid Rocket Booster', AIAA Paper 92-3049, July 1992
  21. Dobbins, R. A and Strand, L. D., 'A Comparison of Two Methods of Measuring Particle Size of $Al_{2}O{3}$ Produced by a Small Rocket Motor', AIAA Journal, Vol. 8, No.9, 1970, pp. 1544-1550 https://doi.org/10.2514/3.5945
  22. Brundige, W. N. and Caveny, L. H., 'Combustion of Low-Bum-Rate HTPB Propellants in an Acceleration Field - Part III', Proceedings of the 18th JANNAF Combustion Meeting, CPIA Pub. 347, Oct. 1981
  23. Lengells, G., Duterque, J., and Trubert, J. F., 'Combustion of Solid Propellants,' RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion, RTO-EN-023, Belgium, May 2002, pp. 4-1 -4-62
  24. Dokhan, A., Price, E. W., Seitzman, J. M., and Sigman, R. K., 'Combustion Mechanisms of Bimodal and Ultra-Fine Aluminum in AP Solid Propellant', AIAA Paper 2002-4173, July 2002
  25. Bui, D. T., Atwood, A. I., and Atienza -Moore, T. M., 'Effect of Aluminum Particle Size on Combustion Behavior of Aluminized Propellants in PCP Binder', 2004 ICT Conference, V-27, 2004
  26. Hwang, C. J. and Chang, G. C. 'Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle', AIAA Journal, Vol. 26, No.6, 1988, pp. 682-689 https://doi.org/10.2514/3.9953

Cited by

  1. Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities vol.48, pp.4, 2011, https://doi.org/10.4191/KCERS.2011.48.4.288