• Title/Summary/Keyword: AKT 활성화

Search Result 77, Processing Time 0.019 seconds

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

Fructus Sophorae Enhances the Production of Prostaglandin E2 and Tumor Necrosis Factor-α through Activation of MAPKs and PI3K/AKT Signaling Pathways in Murine Macrophages (대식세포에서 MAPKs 및 PI3K/AKT 신호전달계 활성을 통한 괴각 추출물의 prostaglandin E2 및 tumor necrosis factor-α 생성의 촉진)

  • Kang, Young-Soon;Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Park, Heungsik;Jung, Jae-Chul;Lee, Jeongrai;Lee, Eun-Woo;Kang, Kyung Hwa;Kim, Cheol Min;Kim, Byung-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1397-1403
    • /
    • 2013
  • Fructus Sophorae, the dried ripe fruit of Styphnolobium japonicum (L.), is an herbal ingredient used in traditional Oriental medicine. This study was carried out to investigate the effects of Fructus Sophorae extracts (FSE) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the production of prostaglandin $E_2$ ($PGE_2$) and tumor necrotic $factor-{\alpha}$ ($TNF-{\alpha}$) were evaluated. Our data revealed that FSE increased the macrophage activation and the production of $PGE_2$ and $TNF-{\alpha}$, which was consistently correlated with upregulation of cyclooxygenase-2 (COX-2) and $TNF-{\alpha}$ expression at both transcriptional and translational levels. On comparative cytokine protein array, FSE significantly increased several cytokines, which was associated with phosphorylation of mitogen- activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), and Akt in RAW 264.7 cells. However, each inhibitor of these molecules attenuated the FSE-induced $PGE_2$ production. These results indicate that FSE activated macrophages through the activation of MAPKs and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways in RAW 264.7 macrophages. These findings suggest that FSE may provide a promising source of an immunoenhancing agent.

Effect of Hot Water Extract from Scutellaria barbata on the Macrophages Activated by Lipopolysaccharide (반지련 (Scutellaria barbata D. Don) 추출물이 lipopolysaccharide에 의해 활성화된 대식세포에 미치는 영향)

  • Shen, Ting;Lee, Yong-Jin;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.313-319
    • /
    • 2008
  • Scutellaria barbata was examined to evaluate its modulatory effects on the functional activation of macrophages under lipopolysaccharide (LPS) treatment. To do this, hot water extract (Sb-HWE) was prepared from Scutellaria barbata and several inflammatory parameters such as nitric oxide (NO) production, phagocytosis, reactive oxygen species (ROS) determination and intracellular signaling pathway were selected to be tested. Sb-HWE strongly blocked NO production in LPS-activated RAW264.7 cells in a dose-dependent manner. However, it did not suppress inducible NO synthase (iNOS). In agreement, Sb-HWE did not diminish inflammatory signaling composed of NF-${\kappa}B$ and its upstream activation signaling enzymes such as Akt and $I{\kappa}B{\alpha}$. Sb-HWE protected RAW264.7 cells from LPS-induced cytotoxicity up to 80% at 400\;{\mu}g/ml$. Furthermore, this extract blocked phagocytic uptake of FITC-dextran, while sodium nitroprusside (SNP)-induced ROS generation in RAW264.7 cells was not decreased. Therefore, our data suggest that Sb-HWE may have differential immunoregulatory function depending on macrophage-mediated immune responses.

Induction of Apoptosis by β-Lapachone in Hep3B Human Hepatocellular Carcinoma Cells Is Caspase-Dependent and Associated with Inactivation of PI3K/Akt Signaling (Hep3B 인간 간암세포에서 caspase 의존적이며 PI3K/Akt 신호전달의 불활성화와 관련된 β-lapachone의 세포사멸 유도)

  • Jae Im Kwon;Yung Hyun Choi;Hyun Hwangbo
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • β-Lapachone is a natural quinone compound originally obtained from the bark of the lapacho tree (Tabebuia vellanedae), which has been used in traditional medicine in several South and Central American countries for treating various diseases. Although β-lapachone has been reported to have potent anticancer activity in many types of cancer cells, its effect on the proliferation of hepatocellular carcinoma (HCC) cells is still unclear. Therefore, in this study, we investigated the effect of β-lapachone on the proliferation of human HCC Hep3B cells. According to our results, the decrease in cell viability of Hep3B cells caused by β-lapachone was closely related to the induction of apoptosis, which was confirmed through changes in nuclear morphology and flow cytometry. In addition, in Hep3B cells treated with β-lapachone, the expression of Bcl-2, an anti-apoptotic factor, was decreased, while the expression of Bax, an apoptosis inducer, was increased, and the activity of the caspase cascade was also increased. However, in the presence of a pan-caspase inhibitor, β-lapachone-induced apoptosis was weakened, indicating that the induction of apoptosis by β-lapachone was caspase-dependent. Moreover, β-lapachone treatment activated extracellular-regulated kinase (ERK) signaling while inhibiting activation of the phosphoinositide 3 kinase (PI3K)/Akt pathway. Furthermore, the effect of the ERK inhibitor on suppressing the induction of apoptosis by β-lapachone was minimal, and the PI3K inhibitor significantly increased β-lapachone-induced apoptosis. The findings from this study will contribute to a better understanding of the anticancer activity of β-lapachone in HCC cells.

Effect of the Hesperetin and Naringenin on $pp60^{v-src}$-induced $NF-{\kappa}B$ Activation ($pp60^{v-src}$에 의한 $NF-{\kappa}B$ 활성화에 대한 헤스페레틴과 나린제닌의 저해 효과)

  • Kwon, O-Song;Kim, Bo-Yeon;Kim, Kyoung-A;Kim, Min-Soo;Oh, Hyun-Cheol;Kim, Beom-Seok;Kim, Young-Ho;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.244-249
    • /
    • 2004
  • The effects of hesperetin and naringenin on $NF-{\kappa}B$ activation were investigated in normal rat kidney cells transformed by temperature sensitive Rous Sarcoma Virus (tsNRK). The flavonoids, naringenin and hesperetin, significantly reduced v-Src-induced $NF-{\kappa}B$ activation as well as phosphorylation of Akt and GSK-3 in tsNRK cells, whereas these compounds did not effect on platelet-derived growth factor (PDGF)-induced $NF-{\kappa}B$ activation in $NIH3T3{\gamma}l$ cells. In addition, the DNA binding activity of SP-I was also reduced but that of AP-1 was not affected by the compounds. Our study suggests that Src-induced $NF-{\kappa}B$ activation could occur via Akt-GSK-3 pathway without $IkB{\alpha}$ degradation and that naringenin and hesperetin could be used in the treatment of cancer through the inhibition of $NF-{\kappa}B$ activation.

Anti-oxidative Effect of Sapindus mukorossi Fruits Extract in LPS-stimulated macrophages via Activation of Nrf2/HO-1 pathway (LPS가 처리된 대식세포에서 Nrf2/HO-1 경로 활성을 통한 무환자나무 열매 추출물의 항산화 효과)

  • Kim, Dae-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1306-1313
    • /
    • 2020
  • The aims of this study were to determine the effects of Sapindus mukorossi fruit extracts (SME) on the anti-oxidant activity in LPS-stimulated RAW264.7 macrophages. The results showed that SME significantly reduced the production of ROS in LPS-stimulated RAW264.7 cells. The expression of pro-inflammatory proteins including COX-2 and iNOS were also obviously inhibited by SME in LPS-stimulated RAW264.7 cells. Further studies revealed that SME up-regulated HO-1 and Nrf2 expression. Additionally, SME increased phosphorylation of Akt and GSK-3β. These results suggest that SME could attenuate oxidative stress by activating the Nrf2/HO-1 signaling pathway.

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

Effects of Acanthopanax senticosus Water Extract on Glucose-Regulating Mechanisms in HepG2 Cells (가시오갈피 물 추출물이 간세포에서 포도당 이용 대사에 미치는 영향)

  • Kim, Dae-Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.552-561
    • /
    • 2017
  • This study aimed to investigate glucose uptake mechanisms and metabolic mechanisms for absorbed glucose in HepG2 cells treated with Acanthopanax senticosus water extract (ASW). A colorimetric assay kit was used to measure polyphenol content, glucokinase (GK) activity, glucose uptake, glucose consumption in cell culture medium, and glycogen content. RT-PCR and western blotting were performed to examine changes in the expression levels of glucose transporter 2 (GLUT2), hepatocyte nuclear factor $1{\alpha}$ ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phospho-AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase, GK, and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$). Increased glucose uptake upon ASW treatment was confirmed to result from increased expression of $HNF-1{\alpha}$, which is one of the transcription factors acting on the GLUT2 promoter. From the measurements of GK activity, we observed that ASW had an effect on glucose phosphorylation, and we also confirmed that increased AMPK phosphorylation promoted glycolysis and suppressed gluconeogenesis. We confirmed that the increase in glycogen upon ASW treatment was induced by activation of Akt by PI3k, followed by phosphorylation of $GSK3{\beta}$. This study demonstrates that ASW activates glucose metabolic mechanisms in liver cells and is therefore a potential candidate to alleviate diabetes.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.