DOI QR코드

DOI QR Code

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts

C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할

  • Dal-Ah KIM (Ewha Medical Research Center, Ewha Womans University College of Medicine) ;
  • Kyoung Hye KONG (Ewha Medical Research Center, Ewha Womans University College of Medicine) ;
  • Hyun-Jeong CHO (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Mi-Ran LEE (Department of Biomedical Laboratory Science, College of Health Science, Jungwon University)
  • 김달아 (이화여자대학교 의과대학 의과학연구소) ;
  • 공경혜 (이화여자대학교 의과대학 의과학연구소) ;
  • 조현정 (건양대학교 의과학대학 임상병리학과) ;
  • 이미란 (중원대학교 의료보건대학 임상병리학과)
  • Received : 2023.08.04
  • Accepted : 2023.08.25
  • Published : 2023.09.30

Abstract

In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

골격근은 대사, 열기반 온도 조절, 그리고 전반적인 체내 균형을 위해 필수적인 조직이고 근발생(myogenesis)이라는 다단계 과정을 거쳐서 근관세포를 형성한다. p-아니스알데하이드(p-anisaldehyde, PAA) (4-메톡시벤잘데하이드)는 아니스 씨에서 추출된 에센셜 오일의 주성분이지만, 골격근에서의 기능은 아직까지 알려져 있지 않다. 따라서, 우리는 마우스 C2C12 근육모세포를 이용하여 근육분화가 PAA에 의해 영향을 받는지를 연구하였다. C2C12 근육모세포의 분화를 유도하기 위해 이 세포를 분화배지에서 5일동안 배양하였고, 매일 PAA (50 또는 200 ㎍/mL)를 포함하는 새로운 배지로 교체하였다. 대조군으로서 PAA가 포함되지 않은 배지를 사용하였다. 우리는 분화시작 후 1, 3, 5일째에 근관세포의 길이와 지름을 측정함으로써 PAA가 근관 형성에 미치는 영향을 평가하였고, quantitative real-time polymerase chain reaction 분석을 통해 PAA가 근육 표지인자(myoblast determination protein 1, myogenin, myocyte enhancer factor 2C, muscle creatine kinase, 및 myosin heavy chain)와 근육위축 관련 유전자(atrogin-1과 muscle ring finger-1 [MuRF-1])의 발현에 미치는 영향을 분석하였다. 또한, 주요 근육형성 키나아제인 protein kinase B (Akt)의 인산화를 웨스턴 블롯을 이용해 관찰하였다. 그 결과 PAA가 더 작고 얇은 근관 형성을 유의하게 유발하며 근육 표지인자의 발현을 감소시킨다는 것을 확인하였다. 또한, atrogin-1과 MuRF-1의 발현이 PAA에 의해서 감소하였는데, 이는 Akt 인산화의 감소와 일치하는 결과이다. 결론적으로, 본 연구결과는 PAA가 Akt 인산화와 활성화를 감소시킴으로써 C2C12 세포에서의 근육 분화를 억제하는 역할을 한다는 것을 증명한다.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001(1345370811)), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01041710) (2019R1I1A1A01055061).

References

  1. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020;10:785-809. https://doi.org/10.1002/cphy.c190029
  2. Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, et al. Mitochondrial dysfunction and skeletal muscle atrophy: causes, mechanisms, and treatment strategies. Mitochondrion. 2023;72:33-58. https://doi.org/10.1016/j.mito.2023.07.003
  3. Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14. https://doi.org/10.1186/s13098-020-0523-x
  4. Comai G, Tajbakhsh S. Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol. 2014;110:1-73. https://doi.org/10.1016/b978-0-12-405943-6.00001-4
  5. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 2006;16:525-532. https://doi.org/10.1016/j.gde.2006.08.008
  6. Londhe P, Davie JK. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle. 2011;1:14. https://doi.org/10.1186/2044-5040-1-14
  7. Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, et al. Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2014;111:4109-4114. https://doi.org/10.1073/pnas.1401732111
  8. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993;75:1351-1359. https://doi.org/10.1016/0092-8674(93)90621-v
  9. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000;57:16-25. https://doi.org/10.1034/j.1399-0004.2000.570103.x
  10. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294-4314. https://doi.org/10.1111/febs.12253
  11. Leger B, Vergani L, Soraru G, Hespel P, Derave W, Gobelet C, et al. Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. FASEB J. 2006;20:583-585. https://doi.org/10.1096/fj.05-5249fje
  12. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704-1708. https://doi.org/10.1126/science.1065874
  13. Wang J, Fry CME, Walker CL. Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep. 2019;9:3920. https://doi.org/10.1038/s41598-019-40553-2
  14. Gulcin I, Oktay M, Kirecci E, Kufrevioglu OI. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003;83:371-382. https://doi.org/10.1016/S0308-8146(03)00098-0
  15. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol. 2008;46:446-475. https://doi.org/10.1016/j.fct.2007.09.106
  16. Xu Y, Cai Z, Ba L, Qin Y, Su X, Luo D, et al. Maintenance of postharvest quality and reactive oxygen species homeostasis of pitaya fruit by essential oil p-Anisaldehyde treatment. Foods. 2021;10:2434. https://doi.org/10.3390/foods10102434
  17. Yang JH, Song Y, Seol JH, Park JY, Yang YJ, Han JW, et al. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A. 2011;108:85-90. https://doi.org/10.1073/pnas.1009830108
  18. Panda AC, Abdelmohsen K, Yoon JH, Martindale JL, Yang X, Curtis J, et al. RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. Mol Cell Biol. 2014;34:3106-3119. https://doi.org/10.1128/mcb.00423-14
  19. Choi RH, McConahay A, Silvestre JG, Moriscot AS, Carson JA, Koh HJ. TRB3 regulates skeletal muscle mass in food deprivation-induced atrophy. FASEB J. 2019;33:5654-5666. https://doi.org/10.1096/fj.201802145rr
  20. Wang X, Li H, Zheng A, Yang L, Liu J, Chen C, et al. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate. Cell Death Dis. 2014;5:e1521. https://doi.org/10.1038/cddis.2014.473
  21. Xu Q, Wu Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem. 2000;275:36750-36757. https://doi.org/10.1074/jbc.m005030200
  22. Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, et al. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol. 2022;38:179. https://doi.org/10.1007/s11274-022-03363-9
  23. Ebrahimi H, Mardani A, Basirinezhad MH, Hamidzadeh A, Eskandari F. The effects of Lavender and Chamomile essential oil inhalation aromatherapy on depression, anxiety and stress in older community-dwelling people: a randomized controlled trial. Explore (NY). 2022;18:272-278. https://doi.org/10.1016/j.explore.2020.12.012
  24. Ramsey JT, Shropshire BC, Nagy TR, Chambers KD, Li Y, Korach KS. Essential oils and health. Yale J Biol Med. 2020;93:291-305.
  25. Dagli N, Dagli R, Mahmoud RS, Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: a review. J Int Soc Prev Community Dent. 2015;5:335-340. https://doi.org/10.4103/2231-0762.165933
  26. Orav A, Raal A, Arak E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat Prod Res. 2008;22:227-232. https://doi.org/10.1080/14786410701424667
  27. Aranega AE, Lozano-Velasco E, Rodriguez-Outeirino L, Ramirez de Acuna F, Franco D, Hernandez-Torres F. MiRNAs and muscle regeneration: therapeutic targets in Duchenne Muscular Dystrophy. Int J Mol Sci. 2021;22:4236. https://doi.org/10.3390/ijms22084236
  28. Judson RN, Rossi FMV. Towards stem cell therapies for skeletal muscle repair. NPJ Regen Med. 2020;5:10. https://doi.org/10.1038/s41536-020-0094-3
  29. Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Recent advances and challenges in the treatment of rhabdomyosarcoma. Cancers (Basel). 2020;12:1758. https://doi.org/10.3390/cancers12071758
  30. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, et al. Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res. 2021;172:105807. https://doi.org/10.1016/j.phrs.2021.105807