Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.2.175

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis  

Min, Gyesik (Department of Nursing, College of Life Science, Gyeongsang National University)
Publication Information
Journal of Life Science / v.32, no.2, 2022 , pp. 175-188 More about this Journal
Abstract
Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.
Keywords
Extracellular matrix remodeling; fibrosis; relaxin; signal transduction mechanisms; vasodilation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bani-Sacchi, T., Bigazzi, M., Bani, D., Mannaioni, P. F. and Masini, E. 1995. Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br. J. Pharmacol. 116, 1589-1594.   DOI
2 Wang, C., Kemp-Harper, B. K., Kocan, M., Ang, S. Y., Hewitson, T. D. and Samuel, C. S. 2016. The anti-fibrotic actions of relaxin are mediated through a NO-sGC-cGMP-dependent pathway in renal myofibroblasts in vitro and enhanced by the NO donor, diethylamine nonoate. Front. Pharmacol. 7, 91.   DOI
3 Wang, D., Luo, Y., Myakala, K., Orlicky, D. J., Dobrinskikh, E., Wang, X. and Levi, M. 2017. Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats. Sci. Rep. 7, 9793.   DOI
4 Wynn, T. A. 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199-210.   DOI
5 Yue, Y., Meng, K., Pu, Y. and Zhang, X. 2017. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133, 124-130.   DOI
6 Zhou, X., Chen, X., Cai, J. J., Chen, L. Z., Gong, Y. S., Wang, L. X., Gao, Z., Zhang, H. Q., Huang, W. J. and Zhou, H. 2015. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des. Devel. Ther. 9, 4599-4611.   DOI
7 van Drongelen, J., van Koppen, A., Pertijs, J., Gooi, J. H., Parry, L. J., Sweep, F. C. G. J., Lotgering, F. K., Smits, P. and Spaanderman, M. E. A. 2012. Impaired vascular responses to relaxin in diet-induced overweight female rats. J. Appl. Physiol. 112, 962-969.   DOI
8 Sherwood, O. D. 2004. Relaxin's physiological roles and other diverse actions. Endocr. Rev. 2, 205-234.   DOI
9 Meng, X. M., Nikolic-Paterson, D. J. and Lan, H. Y. 2016. TGF-beta: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325-338.   DOI
10 Sarwar, M., Samuel, C. S., Bathgate, R. A., Stewart, D. R. and Summers, R. J. 2015. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentrationresponse curves reflect differential coupling to G proteins. Br. J. Pharmacol. 172, 1005-1019.   DOI
11 van Drongelen, J., Ploemen, I. H. J., Pertijs, J., Gooi, J. H., Sweep, F. C. G. J., Lotgering, F. K., Spaanderman, M. E. A. and Smits, P. 2011. Aging attenuates the vasodilator response to relaxin. Am. J. Physiol. Heart Circ. Physiol. 300, H1609-H1615.   DOI
12 Bani, D., Failli, P., Bello, M. G., Thiemermann, C., Sacchi, T. B., Bigazzi, M. and Masini, E. 1998. Relaxin activates the L-arginine nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension 31, 1240-1247.   DOI
13 van Drongelen, J., van Koppen, A., Pertijs, J., Gooi, J. H., Sweep, F. C. G. J., Lotgering, F. K., Spaanderman, M. E. A. and Smits, P. 2013. Impaired effect of relaxin on vasoconstrictor reactivity on spontaneous hypertensive rats. Peptides 49, 41-48.   DOI
14 Wetzl, V., Schinner, E., Kees, F., Hofmann, F., Faerber, L. and Schlossmann, J. 2016. Involvement of cyclic guanosine monophosphate-dependent protein kinase I in renal antifibrotic effects of serelaxin. Front. Pharmacol. 7, 195.   DOI
15 Yoshida, T., Kumagai, H., Kohsaka, T. and Ikegaya, N. 2014. Protective effects of relaxin against cisplatin-induced nephrotoxicity in rats. Nephron Exp. Nephrol. 128, 9-20.   DOI
16 Zhao, L., Samuel, C. S., Tregear, G. W., Beck, F. and Wintour, E. M. 2000. Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63, 697-703.   DOI
17 Du, X-J., Samuel, C. S., Gao, X-M., Zhao, L., Parry, L. J. and Tregear, G. W. 2003. Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc. Res. 57, 395-404.   DOI
18 Eser, P. O. and Janne, P. A. 2018. TGFbeta pathway inhibition in the treatment of non-small cell lung cancer. Pharmacol. Ther. 184, 112-130.   DOI
19 Evans, J. A. 1959. Relaxin (releasin) therapy in diffuse progressive scleroderma; a preliminary report. AMA. Arch. Derm. 79, 150-158.   DOI
20 Bani, D., Ballati, L., Masini, E., Bigazzi, M. and Sacchi, T. B. 1997. Relaxin counteracts asthma-like reaction induced by inhaled antigen in sensitized guinea pigs. Endocrinology 138, 1909-1915.   DOI
21 Beiert, T., Knappe, V., Tiyerili, V., Stockigt, F., Effelsberg, V., Linhart, M., Steinmetz, M., Klein, S., Schierwagen, R., Trebicka, J., Roell, W., Nickenig, G., Schrickel, J. W. and Andrie, R. P. 2018. Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties. Int. J. Cardiol. 250, 21-28.   DOI
22 Bennet, R. G., Kharbanda, K. K. and Tuma, D. J. 2003. Inbibition of markers of hepatic stellate cell activation by the hormone relaxin. Biochem. Pharmacol. 66, 867-874.   DOI
23 Unemori, E. N., Pickford, L. B., Salles, A. L., Piercy, C. E., Grove, B. H., Erikson, M. E. and Amento, E. P. 1996. Relaxin induces an extracellular matrix degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J. Clin. Invest. 98, 2739-2745.   DOI
24 Zheng, G., Cai, J., Chen, X., Chen, L., Ge, W., Zhou, X. and Zhou, H. 2017. Relaxin ameliorates renal fibrosis and expression of endothelial cell transition markers in rats of isoproterenol-induced heart failure. Biol. Pharm. Bull. 40, 960-966.   DOI
25 Fallowfield, J. A., Hayden, A. L., Snowdon, V. K., Aucott, R. L., Stutchfield, B. M., Mole, D. J., Pellicoro, A., GordonWalker, T. T., Henke, A., Schrader, J., Trivedi, P. J., Princivalle, M., Forbes, S. J., Collins, J. E. and Iredale, J. P. 2014. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology 59, 1492-1504.   DOI
26 Fisher, C., MacLean, M., Morecroft, I., Seed, A., Johnston, F., Hillier, C. and McMurray, J. 2002. Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart? Circulation 106, 292-295.   DOI
27 Samuel, C. S., Zhao, C., Bond, C. P., Hewitson, T. D., Amento, E. P. and Summers, R. J. 2004. Relaxin-1-deficient mice develop an age-related progression of renal fibrosis. Kidney Int. 65, 2054-2064.   DOI
28 Jeyabalan, A., Novak, J., Doty, K. D., Matthews, J., Fisher, M. C., Kerchner, L. J. and Conrad, K. P. 2007. Vascular metalloproteinase-9 mediates the inhibition of myogenic reactivity in small arteries isolated from rats after short-term administration of relaxin. Endocrinology 148, 189-197.   DOI
29 Kanai, A. J., Konieczko, E. M., Bennett, R. G., Samuel, C. S. and Royce, S. G. 2019. Relaxin and fibrosis: emerging targets, challenges, and future targets. Mol. Cell. Endocrinol. 487, 66-74.   DOI
30 Katz, L. H., Likhter, M., Jogunoori, W., Belkin, M., Ohshiro, K. and Mishra, L. 2016. TGF-beta signaling in liver and gastrointestinal cancers. Cancer Lett. 379, 166-172.   DOI
31 Yang, J., Chen, C., Ren, H., Han, Y., He, D., Zhou, L., Hopfer, U., Jose, P. A. and Zeng, C. 2012. Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. Hypertens 30, 1176-1184.   DOI
32 Samuel, C. S., Royce, S. G., Chen, B., Cao, H., Gossen, J. A., Tregear, G. W. and Tang, M. L. K. 2009. Relaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease. Endocrinology 150, 1495-1502.   DOI
33 Rao, M. R. and Sanborn, B. M. 1986. Relaxin increases calcium efflux from rat myometrial cells in culture. Endocrinology 119, 435-437.   DOI
34 Royce, S. G., Shen, M., Patel, K. P., Huuskes, B. M., Ricardo, S. D. and Samuel, C. S. 2015. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Res. 15, 495-505.   DOI
35 Samuel, C. S., Cendrawan, S., Gao, X-M., Ming, Z., Zhao, C., Kiriazis, H., Xu, Q., Tregear, G. W., Bathgate, R. A. D. and Du, X-J. 2011. Relaxin remodels fibrotic healing following myocardial infarction. Lab. Invest. 91, 675-690.   DOI
36 Samuel, C. S., Royce, S. G., Hewitson, T. D., Denton, K. M., Cooney, T. E. and Bennett, R. G. 2017. Anti-fibrotic actions of relaxin. Br. J. Pharmacol. 174, 962-976.   DOI
37 McGuane, J. T., Debrah, J. E., Sautina, L., Jarajapu, Y. P. R., Novak, J., Rubin, J. P., Grant, M. B., Segal, M. and Conrad, K. P. 2011. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology 152, 2786-2796.   DOI
38 Vodstrcil, L. A., Tare, M., Novak, J., Dragomir, N., Ramirez, R. J., Wlodek, M. E., Conrad, K. P. and Parry, L. J. 2012. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 26, 4035- 4044.   DOI
39 Masini, E., Bani, D., Bello, M. G., Bigazzi, M., Mannaioni, P. F. and Sacchi, T. B. 1997. Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology 138, 4713-4720.   DOI
40 Masterson, R., Hewitson, T. D., Kelynack, K., Martic, M., Parry, L., Bathgate, R., Darby, I. and Becker, G. 2004. Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol. Dial. Transplant. 19, 544-552.   DOI
41 Mookerjee, J., Hewitson, T. D., Halls, M. L., Summers, R. J., Mathai, M. L., Bathgate, R. A. D., Tregear, G. W. and Samuel, C. S. 2009. Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. FASEB J. 23, 1219-1229.   DOI
42 Massicotte, G., Parent, A. and St-Louis, J. 1989. Blunted responses to vasoconstrictors in mesenteric vasculature but not in portal vein of spontaneously hypertensive rats treated with relaxin. Proc. Soc. Exp. Biol. Med. 190, 254-259.   DOI
43 Samuel, C. S., Unemori, E. N., Mookerjee, I., Bathgate, R. A., Layfield, S. L., Mak, J., Tregear, G. W. and Du, X. J. 2004. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125-4133.   DOI
44 Bani, D., Baronti, R., Vannacci, A., Bigazzi, M., Sacchi, T. B., Mannaioni, P. F. and Masini, E. 2002. Inhibitory effects of relaxin on human basophils activated by stimulation of the Fc epsilon receptor. The role of nitric oxide. Int. immunopharmacol. 2, 1195-1204.   DOI
45 Casten, G. G. and Boucek, R. J. 1958. Use of relaxin in the treatment of scleroderma. J. Am. Med. Assoc. 166, 319-324.   DOI
46 Conrad, K. P. 2011. Maternal vasodilation during pregnancy: emerging role of relaxin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R267-R275.   DOI
47 Debrah, D. O., Novak, J., Matthews, J. E., Ramirez, R. J., Shroff, S. G. and Conrad, K. P. 2006. Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology 147, 5126-5131.   DOI
48 Chen, L., Sha, M. L., Li, D., Zhu, Y. P., Wang, X. J., Jiang, C. Y., Xia, S. J. and Shao, Y. 2017. Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of Toll-like receptor 4 signaling. Oncotarget 8, 21044-21053.   DOI
49 Chow, B. S. M., Chew, E. G. Y., Zhao, C., Bathgate, R. A. D., Hewitson, T. D. and Samuel, C. S. 2012. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One 7, e42714.   DOI
50 Cai, J., Chen, X., Chen, X., Chen, L., Zheng, G., Zhon, H. and Zhou, X. 2017. Anti-fibrosis effect of relaxin and spironolactone combined on isoprenaline-induced myocardial fibrosis in rats via inhibition of endothelial-mesenchymal transition. Cell. Physiol. Biochem. 41, 1167-1178.   DOI
51 Samuel, C. S., Zhao, C., Bathgate, R. A., Bond, C. P., Burton, M. D., Parry, L. J., Summers, R. J., Tang, M. L., Amento, E. P. and Tregear, G. W. 2003. Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J. 17, 121-123.   DOI
52 Samuel, C. S., Zhao, C., Bathgate, R. A., Du, X. J., Summers, R. J., Amento, E. P., Walker, L. L., McBurnie, M., Zhao, L. and Tregear, G. W. 2005. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann. N. Y. Acad. Sci. 1041, 173-181.   DOI
53 Sassoli, C., Chellini, F., Pini, A., Tani, A., Nistri, S., Nosi, D., Zecchi-Orlandini, S., Bani, D. and Formigli, L. 2013. Relaxin prevents cardiac fibroblast-myofibroblast transition via Notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896.   DOI
54 Schinner, E., Wetzl, V., Schramm, A., Kees, F., Sandner, P., Stasch, J. P., Hofmann, F. and Schlossmann, J. 2017. Inhibition of the TGFβ signaling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 7, 550-561.   DOI
55 Conrad, K. P. and Shroff, S. G. 2011. Effects of relaxin on arterial dilation, remodeling, and mechanical properties. Curr. Hypertens. Rep. 13, 409-420.   DOI
56 Chow, B. S. M., Kocan, M., Bosnyak, S., Sarwar, M., Wigg, B., Jones, E. S., Widdop, R. E., Summers, R. J., Bathgate, R. A. D., Hewitson, T. D. and Samuel, C. S. 2014. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 86, 75-85.   DOI
57 Conrad, K. P. 2011. Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia. Semin. Nephrol. 31, 15-32.   DOI
58 Conrad, K. P., Debrah, D. O., Novak, J., Danielson, L. A. and Shroff, S. G. 2004. Relaxin modifies systemic arterial resistance and compliance in conscious, nonpregnant rats. Endocrinology 145, 3289-3296.   DOI
59 Huuskes, B. M., Wise, A. F., Cox, A. J., Lin, E. X., Payne, N. L., Kelly, D. J., Samuel, C. S. and Ricardo, S. D. 2015. Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB J. 29, 540-553.   DOI
60 McGuane, J. T., Danielson, L. A., Debrah, J. E., Rubin, J. P., Novak, J. and Conrad, K. P. 2011. Angiogenic growth factors are new and essential players in the sustained relaxin vasodilatory pathway in rodents and humans. Hypertension 57, 1151-1160.   DOI
61 Pini, A., Boccalini, G., Lucarini, L., Catarinicchia, S., Guasti, D., Masini, E., Bani, D. and Nistri, S. 2016. Protection from cigarette smoke-induced lung dysfunction and damage by H2 relaxin (serelaxin). J. Pharmacol. Exp. Ther. 357, 451-458.   DOI
62 Halls, M. L., Bathgate, R. A. D. and Summers, R. J. 2006. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol. Pharmacol. 70, 214-226.   DOI
63 Garber, S. L., Mirochnik, Y., Brecklin, C. S., Unemori, E. N., Singh, A. K., Slobodskoy, L., Grove, B. H., Arruda, J. A. and Dunea, G. 2001. Relaxin decreases renal interstitial fibrosis and slows progression of renal disease. Kidney Int. 59, 876-882.   DOI
64 Martin, B., Gabris-Weber, B. A., Reddy, R., Romero, G., Chattopadhyay, A. and Salama, G. 2018. Relaxin reverses inflammatory and immune signals in aged hearts. PLoS One 13, e0190935.   DOI
65 Hewitson, T. D., Mookerjee, I., Masterson, R., Zho, C., Tregear, G. W., Becker, G. J. and Samuel, C. S. 2007. Endogenous relaxin is a naturally occuring modulator of experimental renal tubulointerstitial fibrosis. Endocrinology 148, 660-669.   DOI
66 Gieseek 3rd, R. L., Wilson, M. S. and Wynn, T. A. 2018. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62-76.   DOI
67 Gooi, J. H., Richardson, M. L., Jelinic, M., Girling, J. E., Wlodek, M. E., Tare, M. and Parry, L. J. 2013. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol. Reprod. 89, 18.
68 Heeg, M. H., Koziolek, M. J., Vasko, R., Schaefer, L., Sharma, K., Muller, G. A. and Strutz, F. 2005. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int. 68, 96-109.   DOI
69 Hewitson, T. D., Ho, W. Y. and Samuel, C. S. 2010. Antifibrotic properties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology 151, 4938-4948.   DOI
70 Hewitson, T. D., Zhao, C., Wigg, B., Lee, S. W., Simpson, E. R., Boon, W. C. and Samuel, C. S. 2012. Relaxin and castration in male mice protect from, but testosterone exacerbates, age-related cardiac and renal fibrosis, whereas estrogens are an independent determinant of organ size. Endocrinology 153, 188-199.   DOI
71 Hsu, S. Y., Nakabayashi, K., Nishi, S., Kumagai, J., Kudo, M., Sherwood, O. D. and Hsueh, A. J. W. 2002. Activation of orphan receptors by the hormone relaxin. Science 295, 671-674.   DOI
72 Kocan, M., Sarwar, M., Ang, S. Y., Xiao, J., Marugan, J. J., Hossain, M. A., Wang, C., Hutchinson, D. S., Samuel, C. S., Agoulnik, A. J., Bathgate, R. A. D. and Summers, R. J. 2017. ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci. Rep. 7, 2968.   DOI
73 Unemori, E. N. and Amento, E. P. 1990. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J. Biol. Chem. 265, 10681-10685.   DOI
74 Ikeda, Y., Zabbarova, I. V., Birder, L. A., Wipf, P., Getchell, S. E., Tyagi, P., Fry, C. H., Drake, M. J. and Kanai, A. J. 2018. Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice. Neurourol. Urodyn. 37, 2441-2451.   DOI
75 Hisaw, F. L. 1926. Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 23, 661-663.   DOI
76 Jeyabalan, A., Novak, J., Danielson, L. A., Kerchner, L. J., Opett, S. L. and Conrad, K. P. 2003. Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ. Res. 93, 1249-1257.   DOI
77 Kang, Y. M., Lee, H. M., Moon, S. H., Kang, H. and Choi, Y. R. 2017. Relaxin modulates the expression of MMPs and TIMPs in fibroblasts with carpal tunnel syndrome. Yonsei Med. J. 58, 415-422.   DOI
78 Leo, C. H., Jelinic, M., Gooi, J. H., Tare, M. and Parry, L. J. 2014. A vasoactive role for endogenous relaxin in mesenteric arteries of male mice. PLoS One 9, e107382.   DOI
79 Leo, C. H., Jelinic, M., Ng, H. H., Tare, M. and Parry, L. J. 2016. Time-dependent activation of prostacyclin and nitric oxide pathways during continuous i.v. infusion of serelaxin (recombinant human H2 relaxin). Br. J. Pharmacol. 173, 1005-1017.   DOI
80 Masini, E., Bani, D., Bigazzi, M., Mannaioni, P. F. and BaniSacchi, T. 1994. Effects of relaxin on mast cells: in vitro and in vivo studies in rats and guinea pigs. J. Clin. Invest. 94, 1974-1980.   DOI
81 Leo, C. H., Jelinic, M., Parkington, H. C., Tare, M. and Parry, L. J. 2014. Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J. Am. Heart Assoc. 3, e000493.   DOI
82 Kerchner, L. J., Novak, J., Hanley-Yanez, K., Doty, K. D., Danielson, L. A. and Conrad, K. P. 2005. Evidence against the hypothesis that endothelial endothelin B receptor expression is regulated by relaxin and pregnancy. Endocrinology 146, 2791-2797.   DOI
83 Krajnc-Franken, M. A. M., van Disseldorp, A. J. M., Koenders, J. E., Mosselman, S., van Duin, M. and Gossen, J. A. 2004. Impaired nipple development and parturition in LGR7 knockout mice. Mol. Cell. Biol. 24, 687-696.   DOI
84 Lee, S. B. and Kalluri, R. 2010. Mechanistic connection between inflammation and fibrosis. Kidney Int. Suppl. 119, S22-26.
85 Debrah, D. O., Debrah, J. E., Haney, J. L., McGuane, J. T., Sacks, M. S., Conrad, K. P. and Shroff, S. G. 2011. Relaxin regulates vascular wall remodeling and passive mechanical properties in mice. J. Appl. Physiol. 111, 260-271.   DOI
86 Ng, H. H., Jelinic, M., Parry, L. J. and Leo, C. H. 2015. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 309, H285-H296.   DOI
87 Marshall, S. A., Leo, C. H., Senadheera, S. N., Girling, J. E., Tare, M. and Parry, L. J. 2016. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R847-R857.   DOI
88 Jelinic, M., Leo, C. H., Post Uiterweer, E. D., Sandow, S. L., Gooi, J. H., Wlodek, M. E., Conrad, K. P., Parkington, H., Tare, M. and Parry, L. J. 2014. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 28, 275-287.   DOI
89 Leo, C. H., Jelinic, M., Ng, H. H., Marshall, S. A., Novak, J., Tare, M., Conrad, K. P. and Parry, L. J. 2017. Vascular actions of relaxin: nitric oxide and beyond. Br. J. Pharmacol. 174, 1002-1014.   DOI
90 Leo, C. H., Jelinic, M., Ng, H. H., Tare, M. and Parry, L. J. 2016. Serelaxin: a novel therapeutic for vascular diseases. Trends Pharmacol. Sci. 37, 498-507.   DOI
91 Li, Y., Brookes, Z. L. S. and Kaufman, S. 2005. Acute and chronic effects of relaxin on vasoactivity, myogenic reactivity and compliance of the rat mesenteric arterial and venous vasculature. Regul. Pept. 132, 41-46.   DOI
92 Raleigh, J. V., Mauro, A. G., Devarakonda, T., Marchetti, C., He, J., Kim, E., Filippone, S., Das, A., Toldo, S., Abbate, A. and Salloum, F. N. 2017. Reperfusion therapy with recombinant human relaxin-2 (serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res. 113, 609-619.
93 Bathgate, R. A., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M. and Summers, R. J. 2013. Relaxin family peptides and their receptors. Physiol. Rev. 93, 405-480.   DOI
94 Beiert, T., Tiyerili, V., Knappe, V., Effelsberg, V., Linhart, M., Stockigt, F., Klein, S., Schierwagen, R., Trebicka, J., Nickenig, G., Schrickel, J. W. and Andrie, R. P. 2017. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochem. Biophys. Res. Commun. 490, 643-649.   DOI
95 Novak, J., Danielson, L. A., Kerchner, L. J., Sherwood, O. D., Ramirez, R. J., Moalli, P. A. and Conrad, K. P. 2001. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J. Clin. Invest. 107, 1469-1475.   DOI
96 Ng, H. H., Shen, M., Samuel, C. S., Schlossman, J. and Bennett, R. G. 2019. Relaxin and extracellular matrix remodeling: mechanisms and signaling pathways. Mol. Cell. Endocrinol. 487, 59-65.   DOI
97 Nishikori, K., Weisbrodt, N. W., Sherwood, O. D. and Sanborn, B. M. 1983. Effects of relaxin on rat uterine myosin light chain kinase activity and myosin light chain phosphorylation. J. Biol. Chem. 258, 2468-2474.   DOI
98 Nistri, S., Chiappini, L., Sassoli, C. and Bani, D. 2003. Relaxin inhibits lipopolysaccharide-induced adhesion of neutrophils to coronary endothelial cells by a nitric oxide-mediated mechanism. FASEB J. 17, 2109-2111.
99 Novak, J., Parry, L. J., Matthews, J. E., Kerchner, L. J., Indovina, K., Hanley-Yanez, K., Doty, K. D., Debrah, D. O., Shroff, S. G. and Conrad, K. P. 2006. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 20, 2352-2362.   DOI
100 Novak, J., Ramirez, R. J. J., Gandley, R. E., Sherwood, O. D. and Conrad, K. P. 2002. Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R349-R355.   DOI
101 Conrad, K. P. 2010. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension 56, 2-9.   DOI
102 Dschietzig, T., Bartsch, C., Richter, C., Laule, M., Baumann, G. and Stangl, K. 2003. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ. Res. 92, 32-40.   DOI
103 Meera, P., Anwer, K., Monga, M., Oberti, C., Stefani, E., Toro, L. and Sanborn, B. M. 1995. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. Am. J. Physiol. 269, C312-C317.   DOI
104 Bennett, R. G., Heimann, D. G., Singh, S., Simpson, R. L. and Tuma, D. J. 2014. Relaxin decreases the severity of established hepatic fibrosis in mice. Liver Int. 34, 416-426.   DOI
105 Braddon, S. A. 1978. Relaxin-dependent adenosine 6',5'-monophosphate concentration changes in the mouse pubic symphysis. Endocrinology 102, 1292-1299.   DOI
106 Chen, L., Yang, T., Lu, D. W., Zhao, H., Feng, Y. L., Chen, H., Chen, D. O., Vaziri, N. D. and Zhao, Y. Y. 2018. Central role of dysregulation of TGF-beta/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother. 101, 670-681.   DOI
107 Conrad, K. P. 2016. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention. Hum. Reprod. 22, 647-664.
108 Nistri, S., Cinci, L., Perna, A. M., Masini, E. and Bani, D. 2008. Mast cell inhibition and reduced ventricular arrhythmias in a swine model of acute myocardial infarction upon therapeutic administration of relaxin. Inflamm. Res. 57 Suppl 1, S7-8.