• Title/Summary/Keyword: AI Reliability

Search Result 186, Processing Time 0.021 seconds

Research on Mining Technology for Explainable Decision Making (설명가능한 의사결정을 위한 마이닝 기술)

  • Kyungyong Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.186-191
    • /
    • 2023
  • Data processing techniques play a critical role in decision-making, including handling missing and outlier data, prediction, and recommendation models. This requires a clear explanation of the validity, reliability, and accuracy of all processes and results. In addition, it is necessary to solve data problems through explainable models using decision trees, inference, etc., and proceed with model lightweight by considering various types of learning. The multi-layer mining classification method that applies the sixth principle is a method that discovers multidimensional relationships between variables and attributes that occur frequently in transactions after data preprocessing. This explains how to discover significant relationships using mining on transactions and model the data through regression analysis. It develops scalable models and logistic regression models and proposes mining techniques to generate class labels through data cleansing, relevance analysis, data transformation, and data augmentation to make explanatory decisions.

Analysis of Environmentally Responsible Behaviors based on a Typology of Activity Involvement and Place Attachment - Focuses on Visitors to Namhansanseong Provincial Park - (활동관여-장소애착 유형에 따른 환경책임행동분석 - 남한산성 도립공원 방문객을 대상으로 -)

  • Kim, Hyun;Song, Hwasung;Kim, Yeeun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.114-124
    • /
    • 2015
  • The concepts of activity involvement(AI) and place attachment(PA) are useful for explaining the sustainable use of natural resources by humans. Although several studies have investigated the effects of AI and PA on environmental behaviors and found its implications, it has not examined the simultaneous effects of both AI and PA. Thus, the purpose of this study was to develop a typology of both AI and PA. This typology was used to explain the environmentally responsible behaviors of visitors. The study sample surveyed 587 users of the main trail in Namhansanseong Provincial Park The results were analyzed by frequency, reliability, factor analysis, cross-tabulation, T-test, correlation and ANOVA analysis. As a result, the typology identified four subgroups of hikers based on involvement in hiking and attachment to setting. Results also indicate that environmentally responsible behaviors do vary significantly across typology. In detail, general environmental behavior and specific environmental behavior were significantly different between the four groups. These finding suggests that PA seems to play a more powerful role than AI in relation to environmental behavior. While more involved and more attached hikers were more active in environmental behaviors, less involved and less attached hikers had a more passive attitude. In this respect, this study placed emphasis on the fact that the future resource management of tourism and outdoor recreation may be established based on its activity experience in certain place.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Fabrication and Microstructures of Al-Pb Alloy in the Ultrasonic Vibration (초음파진동 조사장 내에서 Al-Pb계 합금의 제조 및 조직)

  • Park, Hun-Berm
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2002
  • Water and oil were completely synthesised with ultrasonic vibration energy irradiation. Pure Pb were added into Al melt during irradiated the ultrasonic vibration energy in 750. And the ultrasonic vibration energy was applied to Al-Pb melt to enhance the miscibility. Microstructural analysis, thermal analysis and X-ray diffraction analysis were carried out to evaluate the effect of the ultrasonic vibration energy on the castability and microstructural reliability. (1) Using the ultrasonic vibration energy irradiation, the complete mixing of water and oil was obtained. (2) The microstructure was refined by the application of ultrasonic vibration energy in Al-Pb alloys. (3) Relatively large Pb particles, $5{\mu}m$ were most distributed alone the grain boundaries with fine Pb particles evenly distributed in the matrix. (4) The solubility of Ph in Al-Pb alloys was increases up to 5% with the application of ultrasonic vibration energy.

Real-time modeling prediction for excavation behavior

  • Ni, Li-Feng;Li, Ai-Qun;Liu, Fu-Yi;Yin, Honore;Wu, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2003
  • Two real-time modeling prediction (RMP) schemes are presented in this paper for analyzing the behavior of deep excavations during construction. The first RMP scheme is developed from the traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural networks. An on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As a case study, in-situ measurements of an excavation were recorded and the measured data were used to verify the reliability of the two schemes. They proved to be both effective and convenient for predicting the behavior of deep excavations during construction. It is shown through the case study that the RMP scheme based on the neural network is more accurate than that based on the traditional AR(p) model.

The study on the fault diagnosis expert system of dynamic system : a servey (대규모 dynamic 전력계통의 고장진단 expert system에 관한 연구)

  • 허성광;정학영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.579-583
    • /
    • 1988
  • As the power facilities grow up, the optimal operation and the best maintenance of power plant can not be overestimated too much, which can enhance the plant availability and reliability much further. In this respect, fault diagnosis methodologies of dynamic system which is time-varing and strongly nonlinear have been studied. On of them is to use algorithm which is based on time-invariant, linear system, but this is not so nice a method for applying to power Plant. Therefore, the study on other techniques using Artificial Intelligence (AI) is under way. In this paper, the existing ways of fault detection are surveyed and their problems are also discussed.

  • PDF

A Study on the Reliability of the Au Wire Bonding due to Baking (Baking 처리에 따른 금선 본딩의 신뢰성 연구)

  • Park, Yong-Cheol;Kim, Yeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.982-986
    • /
    • 1998
  • baking 전후의 금선의 접합강도 변화를 연구하였다. 금선을 이용하여 Si 칩의 AI 패드와 은도금된 리드프레임 사이를 thermosonic 방법으로 본딩하였다. 본딩된 금선을 $175^{\circ}C$에서 시간을 변화시키면서 baking 처리하였다. 접합강도는 와이어 풀 테스트, 볼 전단 테스트, stud 풀 테스트로 평가하였다. 와이어 풀 접합강도는 baking 처리를 거쳐도 크게 변화하지 않았지만 파괴 유형이 baking 전에는 볼목 파괴에서 baking 후 스티치 파괴로 바뀌었다. 본딩과 baking 중 금선의 결정립이 크게 성장하였는데 이런 결정립 크기 변화와 금선 접합 부위의 기하학적인 모양에 따라 파괴 유형이 바뀌었다.

  • PDF

The Trends of Next Generation Cyber Security (차세대 사이버 보안 동향)

  • Lee, Daesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1478-1481
    • /
    • 2019
  • As core technologies(IoT, 5G, Cloud, Bigdata, AI etc) leading the Fourth Industrial Revolution promote smart convergence across the national socio-economic infrastructure, the threat of new forms of cyber attacks is increasing and the possibility of massive damage is also increasing. Reflecting this trend, cyber security is expanding from simple information protection to CPS(Cyber Physical System) protection that combines safety and security that implements hyper-connectivity and ultra-reliability. This study introduces the recent evolution of cyber attacks and looks at the next generation cyber security technologies based on the conceptual changes of cyber security technologies such as SOAR(Security Orchestration, Automation and Response) and Zero Trust.

Adversarial-Mixup: Increasing Robustness to Out-of-Distribution Data and Reliability of Inference (적대적 데이터 혼합: 분포 외 데이터에 대한 강건성과 추론 결과에 대한 신뢰성 향상 방법)

  • Gwon, Kyungpil;Yo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Detecting Out-of-Distribution (OOD) data is fundamentally required when Deep Neural Network (DNN) is applied to real-world AI such as autonomous driving. However, modern DNNs are quite vulnerable to the over-confidence problem even if the test data are far away from the trained data distribution. To solve the problem, this paper proposes a novel Adversarial-Mixup training method to let the DNN model be more robust by detecting OOD data effectively. Experimental results show that the proposed Adversarial-Mixup method improves the overall performance of OOD detection by 78% comparing with the State-of-the-Art methods. Furthermore, we show that the proposed method can alleviate the over-confidence problem by reducing the confidence score of OOD data than the previous methods, resulting in more reliable and robust DNNs.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.