• Title/Summary/Keyword: AI Mathematics

Search Result 111, Processing Time 0.024 seconds

Mathematics Education in Ming and Qing dynasties (명나라와 청나라 시대의 수학 교육)

  • Khang, Mee Kyung
    • Journal for History of Mathematics
    • /
    • v.33 no.5
    • /
    • pp.289-299
    • /
    • 2020
  • In this paper, we investigate the causes and the characteristics of transformations of mathematics education in modern China, focusing on the contents of mathematics education in the Ming and Qing dynasties. In this process, mathematics education was investigated from the overall educational view of each dynasty, so the educational situation of each dynasty was also considered.

ON SIMPLE EXTENSIONS OF δ-FRAMES

  • Lee, Seung On;Choi, Eun Ai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 1999
  • In this paper, we introduce sub-${\delta}$-frames and simple extensions on a ${\delta}$-frame, and study their properties.

  • PDF

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

Analysis of Artificial Intelligence Mathematics Textbooks: Vectors and Matrices (<인공지능 수학> 교과서의 행렬과 벡터 내용 분석)

  • Lee, Youngmi;Han, Chaereen;Lim, Woong
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.443-465
    • /
    • 2023
  • This study examines the content of vectors and matrices in Artificial Intelligence Mathematics textbooks (AIMTs) from the 2015 revised mathematics curriculum. We analyzed the implementation of foundational mathematical concepts, specifically definitions and related sub-concepts of vectors and matrices, in these textbooks, given their importance for understanding AI. The findings reveal significant variations in the presentation of vector-related concepts, definitions, sub-concepts, and levels of contextual information and descriptions such as vector size, distance between vectors, and mathematical interpretation. While there are few discrepancies in the presentation of fundamental matrix concepts, differences emerge in the subtypes of matrices used and the matrix operations applied in image data processing across textbooks. There is also variation in how textbooks emphasize the interconnectedness of mathematics for explaining vector-related concepts versus the textbooks place more emphasis on AI-related knowledge than on mathematical concepts and principles. The implications for future curriculum development and textbook design are discussed, providing insights into improving AI mathematics education.

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.

Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases (인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로)

  • Eunae Burm;Yeol-Eo Chun;Ji Youn Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study tried to find out the applicability and effectiveness of the AI-based adaptive learning system in university classes by operating an AI-based adaptive learning system on a pilot basis. To this end, an AI-based adaptive learning system was applied to analyze the operation results of 42 learners who participated in basic mathematics classes, and a survey and in-depth interviews were conducted with students and professors. As a result of the study, the use of an AI-based customized learning system improved students' academic achievement. Both instructors and learners seem to contribute to improving learning performance in basic concept learning, and through this, the AI-based adaptive learning system is expected to be an effective way to enhance self-directed learning and strengthen knowledge through concept learning. It is expected to be used as basic data related to the introduction and application of basic science subjects for AI-based adaptive learning systems. In the future, we suggest a strategy study on how to use the analyzed data and to verify the effect of linking the learning process and analyzed data provided to students in AI-based customized learning to face-to-face classes.

OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y"+P(x)y=f(x)

  • Zaghrout, A.A.S.;Ragab, A.A.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 1987
  • This paper is a study of the oscillatory and asymptotic behaviour of solutions of the second order nonhomogeneous linear differential equation y"+P(x)y=f(x), and the associated homogeneous equation. Conditions are determined, under which the nonhomogeneous equation is oscillatory if and only if the homogeneous equation is oscillatory.

  • PDF

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.25-31
    • /
    • 2022
  • The purpose of this study is to explore the implications for the systematic operation of the AI curriculum by analyzing the current status of the AI major curriculum in universities. To this end, This study analyzed the relevant curriculum of domestic universities(a total of 51 schools) and overseas QS Top 10 universities based on the industry demand-based standard of AI major curriculum developed through prior research. The main research results are as follows. First, in the case of domestic universities, Python-centered programming subjects were lacking. Second, there were few subjects for advanced learning such as AI application and convergence. Third, the subjects required to perform the AI developer job were insufficient. Fourth, in the case of colleges, the ratio of AI mathematics-related subjects was low. Based on these results, this study presented implications for the systematic operation of the AI major education.

Effect of coding integrated mathematics program on affective mathematics engagement

  • Yujin Lee;Ali Bicer;Ji Hyun Park
    • Research in Mathematical Education
    • /
    • v.27 no.2
    • /
    • pp.223-239
    • /
    • 2024
  • The integration of coding and mathematics education, known as coding-integrated mathematics education, has received much attention due to the strength of Artificial Intelligence-based Science, Technology, Engineering, Arts, and Mathematics (AI-based STEAM) education in improving students' affective domain. The present study investigated the effectiveness of coding-integrated mathematics education on students' development of affective mathematics engagement. Participants in this study were 86 middle and high school students who attended the coding-integrated mathematics program. Surveys of students' affective mathematics engagement were administered before and after the intervention period. The results showed that students' affective mathematics engagement was statistically significantly improved through coding-integrated mathematics education. In particular, students exhibited increased positive affective mathematics engagement in terms of mathematical attitude, emotion, and value. These findings indicate the positive influence of coding-integrated mathematics education on students' learning in mathematics.