• 제목/요약/키워드: AEM 수전해

검색결과 12건 처리시간 0.025초

음이온 교환막 알칼리 수전해의 운전 조건 최적화 (Optimization of Operating Parameters for Alkaline Water Electrolysis Using Anion Exchange Membrane)

  • 장명제;원미소;이규환;최승목
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.151-151
    • /
    • 2016
  • 수소는 친환경 에너지원으로 주목 받고 있으며 미래 화석연료의 고갈에 대비할 수 있는 물질이다. 수전해는 natural gas steam reforming 또는 coal gasification 같은 방법에 비해 공해 물질의 방출이 없어 미래지향적인 기술로 간주된다. 저온형 수전해는 크게 알칼리 수전해와 고분자 전해질막 수전해로 구분되며 각각의 기술은 장단점을 가지고 있다. 알칼리 수전해는 비백금계 물질을 촉매로 사용할 수 있는 이점이 있으나 알칼리 용액으로 인한 부식, 높은 과전압에 의한 효율저하 그리고 간헐적인 사용에 적합하지 않다. 고분자 전해질막 수전해는 간헐적인 사용이 용이하고 높은 에너지 밀도를 가지지만 산성분위기로 인한 백금계 촉매를 사용해야 하므로 수소 생산 비용이 증가하게 된다. 본 연구에서는 알칼리 수전해와 고분자 전해질막 수전해 방식의 이점을 최대한 이용하고 단점을 극복하기 위한 방법으로 음이온 교환막(anion exchange membrane, AEM)을 적용한 셀 구조를 소개한다. 본문에서는 AEM 수전해 단위 셀의 구성요소들인 AEM 종류, 가스 확산층의 밀도와 운전조건인 알칼리 수용액 농도, 온도의 조건을 다르게 하여 최상의 구성 요소 조건 및 운전조건을 알아보았다.

  • PDF

음이온교환막 수전해 촉매기술 동향 (Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis)

  • 김지영;이기영
    • 전기화학회지
    • /
    • 제25권2호
    • /
    • pp.69-80
    • /
    • 2022
  • 고순도 수소생산을 위한 음이온 교환막 수전해는 양성자 교환막 수전해 시스템에서 사용되는 기존 귀금속 촉매 대신 저렴한 비귀금속 기반 촉매를 사용하여 차세대 녹색 수소 생산 기술로 많은 관심을 받고 있다. 하지만 음이온 교환막 수전해 기술은 개발 초기 단계이기 때문에 음이온 교환막 수전해의 핵심 요소인 음이온 교환막, 이오노머, 전극지지체 및 촉매에 관한 연구 수행이 필요하다. 그 중, 현재 촉매 분야에서 진행되고 있는 연구들은 기개발된 알칼리용 반쪽전지 촉매를 음이온 교환막 시스템에 적용하는 방향의 연구가 진행되고 있으며 적용된 촉매는 낮은 활성도와 내구성의 문제점을 가진다. 이에 본 총설은 알칼리성 매질에서 비귀금속 기반 촉매를 사용하여 산소발생반응 및 수소발생반응을 촉진시킨 촉매 합성 기술을 제시하였다.

알칼리 수전해를 위한 상용 음이온교환막에 관한 연구 (Study on Commercially Available Anion Exchange Membrane for Alkaline Water Eectrolysis)

  • 박주왕;유철휘;황갑진
    • 멤브레인
    • /
    • 제31권4호
    • /
    • pp.275-281
    • /
    • 2021
  • 알칼리 수전해용 격막으로 사용가능성을 평가하기 위해 5종류의 상용 음이온교환막의 열적안정성, 이온전도도, 내구성을 평가하였다. TGA (thermo-gravimetric analysis)로 분석한 열적안정성은 FAAM-PK-75와 FAAM-40 막이 다른 3종류의 AEM, AHO, AHA 막과 비교하여 좋은 성능을 보였다. 25℃와 80℃, 7 M KOH 수용액에서의 이온전도도는 AEM막이 다른 막과 비교하여 약 4~17배 높은 값을 보였다. 25℃, 7 M KOH 수용액에서 측정한 내구성은 FAAM-PK-75막이 다른 막과 비교하여 안정하였다.

건식 공정에서 자발적 환원 반응에 의한 AEM 수전해용 Fe-Ni 나노 촉매 제조 및 특성 (Preparation and Characterization of Fe-Ni Nanocatalyst for AEM Electrolysis via Spontaneous Reduction Reaction in Dry Process)

  • 이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.185-194
    • /
    • 2024
  • Fe-Ni nanocatalysts loaded on carbon black were prepared via spontaneous reduction reaction of iron (II) acetylacetonate and nickel (II) acetylacetonate in dry process. Their morphology and elemental analysis were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analyzer. The loading weight of the nanocatalysts was measured by thermogravimetric analyze and the surface area was measured by BET analysis. TEM observation showed that Fe and Ni nanoparticles was well dispersed on the carbon black and their average particle size was 4.82 nm. The loading weight of Fe-Ni nanocatalysts on the carbon black was 6.83-7.32 wt%, and the value increased with increasing iron (II) acetylacetonate content. As the Fe-Ni loading weight increased, the specific surface area decreased significantly by more than 50%, because Fe-Ni nanoparticles block the micropores of carbon black. I-V characteristics showed that water electrolysis performance increased with increasing Ni nanocatalyst content.

Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향 (Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System)

  • 노립신;대관하;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

알칼리 수전해를 위한 상용 음이온교환막의 고온 특성 (High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis)

  • 장수연;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.330-336
    • /
    • 2022
  • In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.

음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 조성국;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.

친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성 (Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis)

  • 대관하;노립신;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction)

  • 장붕비;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성 (Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.