Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.5.293

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis  

DAI, GUANXIA (Department of Electricity and Electrical Engineering, Woosuk University)
LU, LIXIN (Department of Electricity and Electrical Engineering, Woosuk University)
LEE, JAEYOUNG (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University)
LEE, HONGKI (Department of Electricity and Electrical Engineering, Woosuk University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.5, 2021 , pp. 293-298 More about this Journal
Abstract
To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.
Keywords
Anion exchange membrane; AEM water electrolysis; Fe nanocatalyst; Ni nanocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of Nickel Oxide with Graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147, Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.
2 S. Trasatti, "Water electrolysis: who first?", J. Electroanal. Chem., Vol. 476, No. 1, 1999, pp. 90-91, Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1371202.   DOI
3 R. Gazey, S. K. Salman, and D. D. Aklil-D'Halluin, "A field application experience of integrating hydrogen technology with wind power in a remote island location", J. Power Sources, Vol. 157, No. 2, 2006, pp. 841-847, doi: https://doi.org/10.1016/j.jpowsour.2005.11.084.   DOI
4 M. S. Naughton, F. R. Brushett, and P. J. Kenis, "Carbonate resilience of flowing electrolyte-based alkaline fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1762-1768, doi: https://doi.org/10.1016/j.jpowsour.2010.09.114.   DOI
5 B. R. Lee, H. J. Lee, J. H. Heo, C. W. Moon, and H. K. Lim, "Stochastic techno-economic analysis of H2 production from power-to- gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.   DOI
6 V. Vij, S. Sultan, A. Harzandi, A. Meena, J. Tiwari, W. Lee, T. Yoon and K. Kim, "Nickel-based electrocatalysts for energy-related applications; oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800.   DOI
7 M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", J. Korean Inst. Surf. Eng., Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.   DOI
8 H. S. Cho, W. C. Cho, and C. H. Kim, "Low-temperature alkaline water electrolysis", KIC News, Vol. 21, No. 8, 2018, pp. 23, Retrieved from https://www.cheric.org/PDF/PIC/PC21/PC21-5-0023.pdf.
9 J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.   DOI
10 A. Kiani and S. Hatami, "Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction", International Journal of Hydrogen Energy, Vol. 35, No. 11, 2010, pp. 5202-5209, doi: https://doi.org/10.1016/j.ijhydene.2010.03.014.   DOI
11 JJ. Chi and H. M. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.   DOI
12 J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, p. 5498-5503, doi: https://doi.org/10.1021/cm0506555.   DOI
13 J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. U. Jeong, K. J. Jung, K. S. Kang, and S. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans. of the Korean Hydrogen and New Energy Society, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.   DOI
14 K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.   DOI
15 R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14686, doi: https://doi.org/10.1039/C4CC06879C.   DOI
16 R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electro-oxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", Vol. 44, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.   DOI